
18.312: Algebraic Combinatorics Lionel Levine

Lecture 11

Lecture date: March 15, 2011 Notes by: Ben Bond

Today: Mobius Algebras, µ(
∏
n).

Test: The average was 17. If you got < 15, you have the option to hand in up to 3 problems
from the practice midterm, (problems 1,7, and 11) for one point each. This will raise your
score, but no higher than 15. This is due by Tuesday March 29.

1 Simplicial Complexes

Recall last time we proved a formula for the Mobiüs function for a finite poset P . Let
P̂ = 1⊕ P ⊕ 1 = P ∪ {0̂, 1̂}. We showed

µP̂ (0̂, 1̂) = −c1 + c2 . . . (−1)rcr

where ci = #{0̂ = x0 < x1 < . . . < xi = 1̂}, i.e. the number of strict chains in P̂ with
minimal element 0̂, maximal element 1̂.

There is something topological in disguise here, we make the following definition:

Definition 1 A simplicial complex ∆ on a finite set V is a collection of subsets ∆ ⊆ 2V

(2V is the power set of V ), satisfying:

1. {x} ∈ ∆ for all x ∈ V ,

2. If F ∈ ∆, and G ⊆ F , then G ∈ ∆.

Remark 2 2V is a Boolean algebra, and ∆ is an order ideal that contains all sets {x}
You should think of ∆ as a set of (generalized) triangles glued together, as seen in the next
example.

Example 3 Let V = {a, b, c, d, e}, and ∆ = {a, b, c, d, e, ab, ac, bc, bd, cd, ce, de, abc, cde}
(here abc denotes the set {a, b, c}) Think of each set as a simplex of dimension one less
than the cardinality, i.e. ∆ corresponds to the diagram below:
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The simplicial complex ∆ of Example 3

The sets in ∆ are described by faces in the diagram. The triangles abc, cde are shaded
because the sets {a, b, c}, {c, d, e} ∈ ∆, but the set {b, d, e} /∈ ∆, so it does not appear
as a shaded triangle in the diagram. The two-element sets correspond to lines, and one
element sets correspond to points. If there had been a 4 element set, it would be drawn as
a tetrahedron, etc.

In topology, we might have some complicated manifold, but by triangulating it, we get a
simplicial complex, and may use combinatorics to better describe it.

To relate simplicial complexes to posets, we make the following definition:

Definition 4 Given a poset P , the order complex of P is the simplicial complex ∆(P ) =
{F ⊆ P | F totally ordered} i.e. ∆(P ) is all chains in P .

Example 5 Let P = B2. P has Hasse diagram:
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The Hasse diagram of B2

We see that the maximal chains are a < b < d and a < c < d, so ∆(P ) contains the sets
{a, b, d} and {a, c, d}. The simplicial complex is drawn below. (the two triangles have been
colored differently to emphasize that there are two distinct triangles)

The Order Complex of B2

Definition 6 The elements F ∈ ∆ are called faces. The dimension of a face is defined as:

dimF := |F | − 1

Remark 7 The definition of dimension corresponds with what we would expect geometri-
cally. For example, a triangle is defined by its three vertices, and has dimension 2.
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We now introduce the simplest topological invariant:

Definition 8 The Euler Characteristic of a simplicial complex ∆ is:

χ(∆) = f0 − f1 + . . .+ (−1)dfd

Where fi is the number of faces of dimension i, and d = dim ∆ := max{dimF∈∆ F}.

Topologically equivalent simplicial complexes give the same value of χ(∆). Notice that the
formula for χ(∆) is similar to µP̂ , seen above. In fact,

Proposition 9 We have
µP̂ (0̂, 1̂) = χ(∆(P ))− 1

Remark 10 χ(∆(P ))− 1 is known as the reduced Euler characteristic.

Proof: Notice that ck is the number of chains with k+ 1 elements. Since the minimal and
maximal elements are 0̂ and 1̂, this corresponds to finding elements of ∆(P ) with k − 1
elements, i.e. dimension k − 2. The number of these is the coefficient fk−2. Thus we
have a correspondence between the f values and c values, except for there is no f value
corresponding to c1. Since c1 = 1, we must subtract 1 from χ(∆(P )) to make the two equal.
2

2 Mobiüs Algebras

Definition 11 Let L be a lattice, K a field. The Mobiüs Algebra A(L) is defined as,

A(L) = {formal sums
∑
x∈L

axx | ax ∈ K}

with multiplication x · y = x ∧ y

Notice that unlike the incidence algebra, the Mobiüs Algebra is commutative.

Definition 12 We define:

δx =
∑
y≤x

µ(y, x)x
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By Mobiüs inversion, we have

x =
∑
y≤x

δy

Since {x}x∈L form a basis for A(L), and each x may be written as a linear combination
of elements δx, we see that {δx}x∈L, span A(L). Since #{δx}x∈L = #{x}x∈L, this means
{δx}x∈L form a basis of A(L).

We now take a quick aside to define direct sums of K-algebras.

Definition 13 Let A,B be K-algebras. Their direct sum is,

A⊕B = {formal sums a+ b | a ∈ A, b ∈ B}

Multiplication is given by (a+ b)(a′ + b′) = aa′ + bb′

Remark 14 Notice A,B ⊂ A⊕B, by letting a or b be 0 in the definition of A⊕B. Also,
multiplication can be thought of as letting multiplication from A and B carry over to A⊕B,
and defining ab = 0 for a ∈ A, b ∈ B.

We now define a map from A(L) to a direct sum of copies of the field K.

Definition 15 In the space
⊕

x∈LK, let ex denote the identity element of the field in the
sum corresponding to index x. Then we define

θ : A(L)→
⊕
x∈L

K

such that θ(δx) = ex.

The best way to think about
⊕

x∈LK is as a vector space with basis {ex}x∈L. An arbitrary
element is

∑
x∈L cxex, for cx ∈ K. As an algebra, we have multiplication of basis elements

exey = 0 for x 6= y, and exex = ex. Multiplication of general vectors follows from this
definition, for cx, dx ∈ K,

(∑
x∈L

cxex

)(∑
x∈L

dxex

)
=
∑
x∈L

cxdxex.

Proposition 16 The map θ is an isomporphism of K algebras.
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Proof: Since {δx}x∈L form a basis of A(L), and {ex}x∈L form a basis of
⊕

x∈LK, and θ
is a linear map giving a bijective correspondence between basis elements, we see θ is an
isomorphism of vector spaces. To extend this to an isomorphism of algebras, we need to
check that θ(xy) = θ(x)θ(y) for x, y ∈ A(L) (although θ is defined in terms of δx, it is
easiest to check multiplication in the basis {x}x∈L). Using the formula for x given after
Definition 12, we get:

θ(xy) = θ(x ∧ y) = θ

 ∑
z≤x∧y

δz

 =
∑
z≤x∧y

θ(δz) =
∑
z≤x∧y

ez

The last two equalities come from linearity of θ and the definition of θ. We now evalutate
θ(x)θ(y). This gives:

θ(x)θ(y) =

∑
u≤x

eu

∑
w≤y

ew

 =

∑
u≤x
w≤w

euew


Notice euew = 0 unless u = w. This means the only remaining terms are eu for u ≤ x, y,
i.e., u ≤ x ∧ y, which gives

θ(x)θ(y) =
∑
u≤x∧y

eu

This is equal to θ(xy) as calculated above, thus θ(xy) = θ(x)θ(y), and θ is an isomorphism
of algebras. 2

This may seem a little disappointing. We would hope that the Mobiüs algebra would
describe the combinatorial properties of the lattice, but from Proposition 16 we see that
any two lattices with the same cardinality have isomorphic Mobiüs algebras. However, the
Mobiüs algebra has some useful applications as wee will see shortly.

3 Atoms and Coatoms

Definition 17 An atom of a lattice L is a minimal element of L−{0̂}. Dually, a coatom
is a maximal element of L− {1̂}.

Example 18 In L = B3, we have:
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Lemma 19 Let X ⊂ L be a subset satisfying

1. 1̂ /∈ X

2. X contains all coatoms of L

Then
µL(0̂, 1̂) =

∑
k≥1

(−1)kNk

where Nk = #{S ⊂ X |#S = k and
∧
y∈S y = 0̂}.

Proof: Consider
∏
x∈X(1̂−x). By expanding the sum (notice that 1̂ is the identity element,

1̂ ∧ x = x), we get: ∏
x∈X

(1̂− x) =
∑
S⊆X

(−1)#S
∧
y∈S

y

Write this in terms of the basis {x}x∈L to get∑
S⊆X

(−1)#S
∧
y∈S

y =
∑
x∈L

cxx
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When we evaluate the coefficient c0̂ of 0̂, we find,

c0̂ =
∑
S⊆X∧
y∈S=0̂

(−1)#S

Applying the definition of Nk given in the statement of the theorem, we find c0̂ =∑
k≥1(−1)kNk. Notice that k cannot be 0, because the meet over the empty set is 1̂

by definition.

We now evaluate
∏
x∈X(1̂ − x) in a different way to obtain an alternate expression for c0̂.

Using the relation between the bases {x} and {δx}, we may write:

1̂− x =
∑
y≤1̂

δy −
∑
y≤x

δy =
∑
y 6≤x

δy. (1)

Notice that by the isomorphism θ with
⊕

x∈LK, δyδz = 0 for y 6= z, and δyδy = δy. Thus

when we substitute equation (1) into
∏
x∈X(1̂− x) we get:∏

x∈X
(1̂− x) =

∑
y∈Y

δy

where Y = {y ∈ L|y 6≤ x, ∀x ∈ X}. Notice that X contains all coatoms by assumption, and
the only element of L greater than all coatoms is 1̂. Since 1̂ /∈ X, 1̂ is the only element of
Y . Thus

∏
x∈X(1̂−x) = δ1̂. Recall that δ1̂ =

∑
y≤1̂ µL(y, 1̂)y. By comparing the coefficient

of c0̂ for this description of
∏
x∈X(1̂ − x), and the one that was obtained earlier, we find

that
µL(0̂, 1̂) =

∑
k≥1

(−1)kNk,

as desired. 2

The use of this formula is not immediately clear, however, we present the following corollary:

Corollary 20 If 0̂ is not a meet of coatoms of L, then µL(0̂, 1̂) = 0. Dually, if 1̂ is not a
join of atoms, then µL(0̂, 1̂) = 0.

Example 21 A simple example of such a lattice is a chain. There is only one atom and
one coatom, so 1̂ is not a join of atoms, and 0̂ is not the meet of coatoms.

Proof: To prove (1), let X = {coatoms}, and apply Lemma 19. Then Nk = 0 for all k.
This follows from the definition of Nk and the assumption that 0̂ is not a meet of coatoms.
Thus by Lemma 19, µL(0̂, 1̂) = 0.

11-8



To prove (2), notice that the atoms of L are in bijective correspondence with the coatoms
of L∗, and that ζL(x, y) = ζL∗(y, x), i.e. ζL∗ = (ζL)T . Since the operations transpose and
matrix inverse commute, we find:

µL∗ = (ζL∗)
−1 = ((ζL)T )−1 = (ζ−1

L )T = µTL

Thus µL(0̂, 1̂) = µL∗(1̂, 0̂), so by part (1), µL∗(1̂, 0̂) = 0 2

Example 22

Let L be a finite distributive lattice. By Birkhoff’s theorem, L = J(P ) for some poset
P . We wish to compute µL. Notice that each lattice for which we have found µ, it is
distributive, so all our previous examples will be a corollary of this example. Let [I, I ′] be
an interval in J(P ), i.e. I ⊆ I ′ are order ideals of P . We compute µL(I, I ′). Notice that
[I, I ′] is an interval of a distributive lattice, hence a distributive lattice, so [I, I ′] = J(Q)
for some Q. We claim that Q = I ′ − I. To see this notice we may make a map from [I, I ′]
to J(I ′ − I) by sending an element I ′′ ∈ [I, I ′] to I ′′ − I ∈ J(Q). We can see that I ′′ − I
is indeed an order ideal of Q, because it is closed under going down the lattice. To see the
inverse map is well defined, say H ⊂ Q is an order ideal, so H ∪ I is also an order ideal (of
P ) containing I, hence H ∪ I ∈ [I, I ′].

Now look at atoms of [I, I ′]. They must all be of the form I∪{x}, where x covers an element
of I. For example, in the Hasse diagram of P below, we see that I ∪ {x} and I ∪ {x′} both
cover I (which is the 0̂ element of [I, I ′]), so they are atoms). However, I ∪ {y} is not an
order ideal, so is not an atom. Any order ideal containing y must also contain x and x′,
hence cannot be an atom.

Example of a Hasse diagram of P
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From this we see that the join of all atoms is I ∪ M , where M = {x ∈
P | x covers some element of I}. When is the maximal element I ′ a join of atoms? When
I ′ = I ∪M . For example, this is not true in the above diagram, because I ′ = I ∪ {x, x′, y}
is not a join of atoms.

We claim that I ′ = I ∪M if and only if Q is an antichain. To see this, notice that if any
two elements were comparable, then the larger would not be contained in an ideal that is a
join of atoms.

In the case that Q is an antichain, we get [I, I ′] = J(Q) = Bn, where n = |Q| = |I ′| − |I|.
This means [I, I ′] is a boolean algebra, so we may explicitly write down µ(I, I ′) (it was
computed in lecture 10). Thus we have proved the following theorem:

Theorem 23 Let L = J(P ) be a finite distributive lattice, and I ⊂ I ′ ∈ L. Then:

µL(I, I ′) =

{
0 [I, I ′] � Bn
(−1)n [I, I ′] ∼= Bn

4 Computing µ(
∏

n)

Recall
∏
n is the poset of partitions of n, ordered by refinement. We would like to compute

µ∏
n
(σ, τ).

Example 24 We first draw the Hasse diagram of
∏

3. The notation (12|3) means a parti-
tion into a block contain 1,2, and a block containing 3.

Hasse Diagram of
∏

3
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Notice that (12|3) ∨ ((13|2) ∧ (23|1)) = (12|3) ∨ (1|2|3|) = (12|3) and that ((12|3) ∨ (13|2) ∧
((12|3)∨ (23|1)) = (123)∧ (123) = (123), so this lattice is not distributive. Thus we cannot
apply Theorem 23.

To calculate µ∏
n
(σ, τ), notice that σ ≤ τ means every block of σ is contained in a block of

τ , and every block of τ is a disjoint union of blocks of σ. Write τ = (τ1, . . . , τk), and say
that τi =

⋃
j∈Bi

σj . The Bi index which σj the block τi is composed of. Let λi = |Bi|. If
π ∈ [σ, τ ], then π satisfies:

1. σ ≤ π, so each block of π is a union of blocks of σ.

2. π ≤ τ , so each block of π is contained in a block of τ .

We claim that:
[σ, τ ] ∼=

∏
λ1

×
∏
λ2

× . . .×
∏
λk

Proof: Choosing π ∈ [σ, τ ] is equivalent to choosing a partition of Bi for i = 1 . . . k. Since
|Bi| = λi, this is just a partition of λi. 2

Using the formula for µ of a product poset, we find:

µ∏
n
(σ, τ) = mλ1mλ2 . . .mλk

where ml = µ(
∏
l). This is new notation, defined by µ(

∏
l) = µ∏

l
(0̂, 1̂). It is motivated by

the fact that each interval in a lattice is a lattice, so we may think of µ as a function on
lattices.

This example will be finished next class.
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