18.312: Algebraic Combinatorics Lionel Levine

Lecture 13
Lecture date: Mar 29, 2011 Notes by: Alex Arkhipov

1 Introduction

Today, we're going to introduce g-analogues, which are a refinement of binomial coeffi-
cients. To understand g-analogues combinatorially, we’ll show how they arise from counting
problems on the lattice of vector spaces over a finite field.

2 Review of Finite Fields

We expect you already know what a field is: an algebraic structure in which you can add,
subtract, multiply, and divide, and has 0 and 1 elements that behave like you’d expect them
to. You can look up the field axioms.

A field may have 1+ 14 ---4+ 1 = 0 for some number of ones. In fact, for a finite field, this
must be the case for some number of ones, and the minimum such number of ones is the
field’s characteristic. There is exactly one finite field with ¢ elements (written [F,) for each
q that is a power of a prime, ¢ = p"™. This field has characteristic p. When m = 1, the field
[F,, is the familiar field Z/pZ of integers modulo p.

3 The Subspace Lattice and Flags

Let [y be the vector space of n-tuples of elements of the field F;. We're going to concentrate
on one combinatorial object, the lattice of linear subspaces of Iy ordered by inclusion.

Definition 1 Define L, (q) to be the lattice of linear subspaces of Fy partially ordered by
inclusion. The meet V. NW 1is given by the intersection V. NW and the join V VW by the
sum V +W = span(VUW).

In the definition of L,(q), we do not take the empty set to be a subspace.

Definition 2 A flag (also called a complete flag) is a maximal chain in L,(q).
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So, a flag is a sequence of subspaces one dimension higher than and containing the previous.
For the chain to be maximal, it must contain n 4 1 subspaces, whose dimensions start at 0
and count up through n.

{O}:E()CEl C "'CEn:Fg.
Note that dim(E;) = i.

Here’s the question we’d like to answer:
Question 3 How many flags of Fy are there (call this fn(q))?

Since one can specify a flag by choosing spaces Ey, E1, ..., Ey, in sequence, we will count
the number of choices at each step.

Ey: No choice, must be {0}.

Ey: We're choosing a line through the origin. It suffices to choose any nonzero point
v € Fy —{0} and let F; be the subspace its spans (v), and there are ¢" — 1 ways to do this.
But, since (v) = (A\v) for any nonzero scalar A of F;, we're overcounting by a factor of ¢ — 1.
So, there are % choices.

Ey: We wish to extend E; = (v1) by adding a new vector so that Fy = (vi,v2). Any
vy € Fy — (v1) works, of which there are ¢" — ¢q. But since (vi,v2) = (v1, Avz + w) for any

A e F, — {0} and w € Ey, there are qq(Z:f) choices.

Ej: In general, having chosen Ey_; = (v1,v2,...,v5_1), there are ¢" — ¢*~! choices of
vp € Fy — Eg_1, and since (v1,v2, - , Vg1, 0%) = (V1, V2, -+ ,Vp_1, Avp + w) for X € F,—{0}

n k—
and w € Ej_1, there are % choices at this step.

Multiplying out the number of choices at each step, we find that

qn_l qn_q qn_qnfl
fn(q) = X Xowee X,
q—1  (¢—1)g (g —1)q
or simplified,
¢"—1 ¢ -1 q—1
fn(Q) = X .o -

X X :
q—1 q—1 q—1
We note that the top and bottom contain equally many factors of ¢ — 1, and cancelling
them allows f,,(q) to be expressed as a polynomial.

fa@=Q0+q++¢" ) (Q+g+ -+ (1+q+¢*) 1+ 1)
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4 ¢-Analogues

We'll see in this section how the notions and formulas we’ve derived for the lattice L, (q)
look like polynomial-in-g versions of the corresponding notions for the Boolean algebra B,,.
We call these g-analogues.

We note that plugging in ¢ = 1 gives f,(1) = n!. Though there’s no field with one element,
n! is the number of maximal chains of the Boolean algebra B,. (There is a not fully-
understood notion of B, acting like a ”‘field with one element” version of L,(q)) Each
maximal chain of B,, is given by a permutation of [n], analogous to a flag being a maximal
chain of Fj;. Looking at the products

fa@=Q0+q+ - +¢" ) (Q+g+ -+ (1+q+¢*) (1+9q)

and
nl=nxn-1)x---x2x1,

it makes sense to identify each number k with it’s g-analogue 1 + ¢ + --- 4+ ¢*~!

abbreviate as [k],.

, which we

Here’s a summary of the g-analogue correspondence.

Concept | g-analogue
no | nfg=1+g+---q"
n! [nlq! = [1q[2g - - [nlq
B, Ln(Q)
Sn flags in Fy
G| [,

5 ¢-binomial coefficients

The rest of today’s lecture will look at the the last row of the table, the g-analogue of (Z),
which we’ll denote as [Z]q. If (Z) is the number of subsets of n of size k, then [Z]q should
be the number of k-dimensional subspaces of Fy (k-subpaces for short). We’ll show that
(1) is related to [n]! in the same way as (}}) to factorials.

Lemma 4

Proof: We'll count in two ways the pairs (V, E) where V is a k-subspace of Fy and E'is a
flag (Ey, ..., Ey) of Fy for which Ey = V.
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For the first way, first choose a flag E; there are [n],! choices. Since each E has a unique
subspace V' = EJ, there are [n],! pairs.

For the second way, fix V, of which there are [Z]q choices. Now, we’re left to choose
(E(), e ,Ekfl) with
{O}ZEUCE1C"'CEk=V

and (Ex41,...,E,) with

V=E; CEg1C--CE,=Fy.

The first choice corresponds to a flag in FZ, of which there are [k],!. For the second, we

note that the sublattice of [y of subspaces containing the k-subspace V' is isomorphic to
L,,_x(q) via modding out by V. So, there are as many choices as flags of L,,_r(q), of which
there are [n — k|,!. So, the overall number of pairs is

So,

which gives the result. O

Let’s work through an example.

Example 5 How many 2-subspaces are there of Fg?

Answer 6
41 M (@ -D@E-D(@-Dg-1) _
Mq ST @ Da-Dx (@ D=1~ D) = a2 g

Note how the rational functions cancel to produced a polynomial, moreover one whose
coefficients are non-negative integers. This should tip you off that these coefficients are
counting something. But before we get to that, let’s show that this is true in general by
means of a recurrence.

Lemma 7
= q
k q k a k—1 4

(Note that when q = 1, we get the usual recurrence for (}}).)
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Proof: Fix a hyperplane ((n — 1)-subspace) H C Fy. We'll split the k-subspaces V' that
[Z]q counts into two categories.

If V C H, there are ["gl]q choices of V.

If V¢ H, then let W be the (k — 1)-subspace W = H N'V. There are [Z:ﬂq possible W
within H. For each W, the k-subspaces V with W = H NV are exactly those k-subspaces
V with W C V C Fy, excluding those with W C V' C H. Modding out by W, these are in
one-to-one correspondence with lines (1-subspaces) in Fy /W and H/W respectively, so the
number of eligible V' is

n—k+ 1], —[n—k],=q¢" "

So, overall, there are [Z:ﬂqq”_k k-subspaces V with V ¢ H. O

From the recurrence, we see that we can build the g-analogue of Pascal’s Triangle, where
each entry is in row ¢ is the the entry above it plus ¢* times the entry to its left.

11 1 1 1
1 ¢g+1 PHqg+1 CHP+q+1

1 ¢+q+1 P28+ q9+1

1 @+ +q+1

1

6 Partitions

Now that we know that the coefficients of the g-binomial [Z] are non-negative integers, we’d
like to understand what they count. We’ll see that they count a certain type of partition.

Definition 8 A partition of [ is a sequence of natural numbers \y > Ao > --- > XN > 0
whose sum is .

Partitions are like the compositions we defined before, except reorderings, which is achieved
by writing the parts in decreasing order. We may have fewer than [ parts by having all
remaining parts equal zero. For example, there are five partitions of 4, which are (omitting
zero parts) 4, 3+1, 242, 2+1+1, and 1+14+141.

Definition 9 The Young Diagram of a partition of | is the union of A1 boxes in row 1,
A2 bozes in row 2, and so on. Equivalently, it is the set of pairs (i,j) with 1,5 > 0 and
J < \i. We say that a partition fits in an a X b box if all pairs (i,7) have i < a and j < b.
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Figure 1: Young Diagrams of all partitions of the numbers 1 through 8. From Wikipedia.

13-6



Theorem 10
k(n—k)
n
[~ X
q =0
where a; is number of partitions of | whose Young Diagram fits in a k x (n — k) boz.

For example, corresponding to the polynomial [;1] .= q* + ¢® + 2¢* + ¢ + 1 is the fact that
one partition of four fits in a 2 x 2 box, as do one partition of 3, two partitions of 2, one
partition of 1, and one partition of 0 (the empty partition), which can be counted from in
Figure 1.

WEe’ll prove the theorem next class, but today let’s note a couple of things.

First, [Z]q has degree k(n — k), which we could have checked from the degrees of the ¢-
factorial terms in its definition.

Second, this theorem makes clear that [Z] .= [nf k] o since the expression is symmetric with

respect to k and n — k.

Third, it exposes another symmetry, that the coeflicients of each g-binomial are palindromic.
This follows from the one-to-one correspondence in which a Young Diagram of a partition
of [ inside a k x (n— k) box has its complement taken and is rotated 180 degrees, to produce
the Young Diagram of a partition of k(n — k) — [ inside a k x (n — k) box.

Finally, taking ¢ = 1, we have the (Z) equals the total number of partitions that fit in
a k xn —k box. How can we understand this combinatorially? Observe that the right
and bottom boundary of the Young Diagram uniquely defines a path from the bottom left
corner to the top right corner of the k x (n — k) box, made of unit steps going up or right.
There are k ups and n — k rights, and their sequence defines a subset of k£ of n. In this way,
we see that g-binomials mq are a more refined count of subset of n of size k, groups by
how much area the corresponding path bounds.
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