18.312: Algebraic Combinatorics	Lionel Levine
Lecture 13	
Lecture date: Mar 29, 2011	Notes by: Alex Arkhipov

1 Introduction

Today, we're going to introduce q-analogues, which are a refinement of binomial coefficients. To understand q-analogues combinatorially, we'll show how they arise from counting problems on the lattice of vector spaces over a finite field.

2 Review of Finite Fields

We expect you already know what a field is: an algebraic structure in which you can add, subtract, multiply, and divide, and has 0 and 1 elements that behave like you'd expect them to. You can look up the field axioms.

A field may have $1+1+\cdots+1=0$ for some number of ones. In fact, for a finite field, this must be the case for some number of ones, and the minimum such number of ones is the field's *characteristic*. There is exactly one finite field with q elements (written \mathbb{F}_q) for each q that is a power of a prime, $q=p^m$. This field has characteristic p. When m=1, the field \mathbb{F}_p is the familiar field $\mathbb{Z}/p\mathbb{Z}$ of integers modulo p.

3 The Subspace Lattice and Flags

Let \mathbb{F}_q^n be the vector space of *n*-tuples of elements of the field \mathbb{F}_q . We're going to concentrate on one combinatorial object, the lattice of linear subspaces of \mathbb{F}_q^n ordered by inclusion.

Definition 1 Define $L_n(q)$ to be the lattice of linear subspaces of \mathbb{F}_q^n partially ordered by inclusion. The meet $V \wedge W$ is given by the intersection $V \cap W$ and the join $V \vee W$ by the sum $V + W = span(V \cup W)$.

In the definition of $L_n(q)$, we do not take the empty set to be a subspace.

Definition 2 A flag (also called a complete flag) is a maximal chain in $L_n(q)$.

So, a flag is a sequence of subspaces one dimension higher than and containing the previous. For the chain to be maximal, it must contain n + 1 subspaces, whose dimensions start at 0 and count up through n.

$$\{0\} = E_0 \subset E_1 \subset \cdots \subset E_n = \mathbb{F}_q^n$$

Note that $dim(E_i) = i$.

Here's the question we'd like to answer:

Question 3 How many flags of \mathbb{F}_q^n are there (call this $f_n(q)$)?

Since one can specify a flag by choosing spaces E_0, E_1, \ldots, E_n in sequence, we will count the number of choices at each step.

 E_0 : No choice, must be $\{0\}$.

 E_1 : We're choosing a line through the origin. It suffices to choose any nonzero point $v \in \mathbb{F}_q^n - \{0\}$ and let E_1 be the subspace its spans $\langle v \rangle$, and there are $q^n - 1$ ways to do this. But, since $\langle v \rangle = \langle \lambda v \rangle$ for any nonzero scalar λ of \mathbb{F}_q , we're overcounting by a factor of q - 1. So, there are $\frac{q^n - 1}{q - 1}$ choices.

 E_2 : We wish to extend $E_1 = \langle v_1 \rangle$ by adding a new vector so that $E_2 = \langle v_1, v_2 \rangle$. Any $v_2 \in \mathbb{F}_q^n - \langle v_1 \rangle$ works, of which there are $q^n - q$. But since $\langle v_1, v_2 \rangle = \langle v_1, \lambda v_2 + w \rangle$ for any $\lambda \in \mathbb{F}_q - \{0\}$ and $w \in E_1$, there are $\frac{q^n - q}{q(q-1)}$ choices.

 E_k : In general, having chosen $E_{k-1} = \langle v_1, v_2, \dots, v_{k-1} \rangle$, there are $q^n - q^{k-1}$ choices of $v_k \in \mathbb{F}_q^n - E_{k-1}$, and since $\langle v_1, v_2, \dots, v_{k-1}, v_k \rangle = \langle v_1, v_2, \dots, v_{k-1}, \lambda v_k + w \rangle$ for $\lambda \in \mathbb{F}_q - \{0\}$ and $w \in E_{k-1}$, there are $\frac{q^n - q^{k-1}}{(q-1)q^{k-1}}$ choices at this step.

Multiplying out the number of choices at each step, we find that

$$f_n(q) = \frac{q^n - 1}{q - 1} \times \frac{q^n - q}{(q - 1)q} \times \dots \times \frac{q^n - q^{n-1}}{(q - 1)q^{n-1}},$$

or simplified.

$$f_n(q) = \frac{q^n - 1}{q - 1} \times \frac{q^{n-1} - 1}{q - 1} \times \dots \times \frac{q - 1}{q - 1}.$$

We note that the top and bottom contain equally many factors of q-1, and cancelling them allows $f_n(q)$ to be expressed as a polynomial.

$$f_n(q) = (1 + q + \dots + q^{n-1}) (1 + q + \dots + q^{n-2}) \dots (1 + q + q^2) (1 + q) (1).$$

4 q-Analogues

We'll see in this section how the notions and formulas we've derived for the lattice $L_n(q)$ look like polynomial-in-q versions of the corresponding notions for the Boolean algebra B_n . We call these q-analogues.

We note that plugging in q = 1 gives $f_n(1) = n!$. Though there's no field with one element, n! is the number of maximal chains of the Boolean algebra B_n . (There is a not fully-understood notion of B_n acting like a "field with one element" version of $L_n(q)$ Each maximal chain of B_n is given by a permutation of [n], analogous to a flag being a maximal chain of \mathbb{F}_q^n . Looking at the products

$$f_n(q) = (1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1+q+q^2)(1+q)$$

and

$$n! = n \times (n-1) \times \cdots \times 2 \times 1$$

it makes sense to identify each number k with it's q-analogue $1 + q + \cdots + q^{k-1}$, which we abbreviate as $[k]_q$.

Here's a summary of the q-analogue correspondence.

Concept	q-analogue	
\overline{n}	$[n]_q = 1 + q + \cdots + q^{n-1}$	
n!	$[n]_q! = [1]_q[2]_q \cdots [n]_q$	
B_n	$L_n(q)$	
S_n	flags in \mathbb{F}_q^n	
$\binom{n}{k}$	$\left[egin{array}{c} n \ k \end{array} ight]_q$	

5 q-binomial coefficients

The rest of today's lecture will look at the the last row of the table, the q-analogue of $\binom{n}{k}$, which we'll denote as $\binom{n}{k}_q$. If $\binom{n}{k}$ is the number of subsets of n of size k, then $\binom{n}{k}_q$ should be the number of k-dimensional subspaces of \mathbb{F}_q^n (k-subpaces for short). We'll show that $\binom{n}{k}$ is related to [n]! in the same way as $\binom{n}{k}$ to factorials.

Lemma 4

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Proof: We'll count in two ways the pairs (V, E) where V is a k-subspace of \mathbb{F}_q^n and E is a flag (E_0, \ldots, E_n) of \mathbb{F}_q^n for which $E_k = V$.

For the first way, first choose a flag E; there are $[n]_q!$ choices. Since each E has a unique subspace $V = E_k$, there are $[n]_q!$ pairs.

For the second way, fix V, of which there are $\begin{bmatrix} n \\ k \end{bmatrix}_q$ choices. Now, we're left to choose (E_0, \ldots, E_{k-1}) with

$$\{0\} = E_0 \subset E_1 \subset \cdots \subset E_k = V$$

and (E_{k+1}, \ldots, E_n) with

$$V = E_k \subset E_{k+1} \subset \cdots \subset E_n = \mathbb{F}_q^n$$
.

The first choice corresponds to a flag in \mathbb{F}_q^k , of which there are $[k]_q!$. For the second, we note that the sublattice of \mathbb{F}_q^n of subspaces containing the k-subspace V is isomorphic to $L_{n-k}(q)$ via modding out by V. So, there are as many choices as flags of $L_{n-k}(q)$, of which there are $[n-k]_q!$. So, the overall number of pairs is

$$\begin{bmatrix} n \\ k \end{bmatrix}_q \times [k]_q! \times [n-k]_q!.$$

So,

$$[n]_q! = \begin{bmatrix} n \\ k \end{bmatrix}_q \times [k]_q! \times [n-k]_q!,$$

which gives the result. \Box

Let's work through an example.

Example 5 How many 2-subspaces are there of \mathbb{F}_q^4 ?

Answer 6

$$\begin{bmatrix} 4 \\ 2 \\ q \end{bmatrix}_q = \frac{[4]_q!}{[2]_q![2]_q!} = \frac{(q^4 - 1)(q^3 - 1)(q^2 - 1)(q - 1)}{(q^2 - 1)(q - 1) \times (q^2 - 1)(q - 1)} = (q^2 + 1)(q^2 + q + 1) = q^4 + q^3 + 2q^2 + q + 1$$

Note how the rational functions cancel to produced a polynomial, moreover one whose coefficients are non-negative integers. This should tip you off that these coefficients are counting something. But before we get to that, let's show that this is true in general by means of a recurrence.

Lemma 7

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q q^{n-k}$$

(Note that when q = 1, we get the usual recurrence for $\binom{n}{k}$.)

Proof: Fix a hyperplane ((n-1)-subspace) $H \subset \mathbb{F}_q^n$. We'll split the k-subspaces V that $\begin{bmatrix} n \\ k \end{bmatrix}_q$ counts into two categories.

If $V \subset H$, there are $\binom{n-1}{k}_q$ choices of V.

If $V \not\subset H$, then let W be the (k-1)-subspace $W = H \cap V$. There are $\begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q$ possible W within H. For each W, the k-subspaces V with $W = H \cap V$ are exactly those k-subspaces V with $W \subset V \subset \mathbb{F}_q^n$, excluding those with $W \subset V \subset H$. Modding out by W, these are in one-to-one correspondence with lines (1-subspaces) in \mathbb{F}_q^n/W and H/W respectively, so the number of eligible V is

$$[n-k+1]_q - [n-k]_q = q^{n-k}$$
.

So, overall, there are $\binom{n-1}{k-1}_q q^{n-k}$ k-subspaces V with $V \not\subset H$. \square

From the recurrence, we see that we can build the q-analogue of Pascal's Triangle, where each entry is in row i is the entry above it plus q^i times the entry to its left.

6 Partitions

Now that we know that the coefficients of the q-binomial $\begin{bmatrix} n \\ k \end{bmatrix}_q$ are non-negative integers, we'd like to understand what they count. We'll see that they count a certain type of partition.

Definition 8 A partition of l is a sequence of natural numbers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l \geq 0$ whose sum is l.

Partitions are like the compositions we defined before, except reorderings, which is achieved by writing the parts in decreasing order. We may have fewer than l parts by having all remaining parts equal zero. For example, there are five partitions of 4, which are (omitting zero parts) 4, 3+1, 2+2, 2+1+1, and 1+1+1+1.

Definition 9 The **Young Diagram** of a partition of l is the union of λ_1 boxes in row 1, λ_2 boxes in row 2, and so on. Equivalently, it is the set of pairs (i,j) with i,j>0 and $j \leq \lambda_i$. We say that a partition fits in an $a \times b$ box if all pairs (i,j) have $i \leq a$ and $j \leq b$.

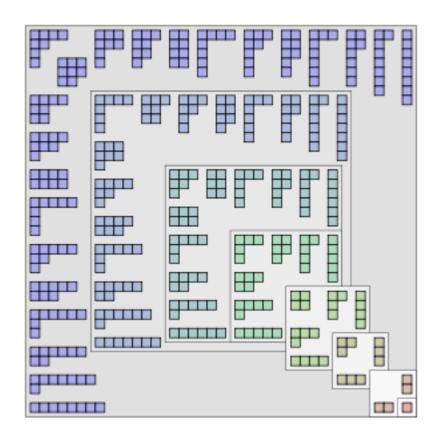


Figure 1: Young Diagrams of all partitions of the numbers 1 through 8. From Wikipedia.

Theorem 10

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{l=0}^{k(n-k)} a_l q^l,$$

where a_l is number of partitions of l whose Young Diagram fits in a $k \times (n-k)$ box.

For example, corresponding to the polynomial $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = q^4 + q^3 + 2q^2 + q + 1$ is the fact that one partition of four fits in a 2×2 box, as do one partition of 3, two partitions of 2, one partition of 1, and one partition of 0 (the empty partition), which can be counted from in Figure 1.

We'll prove the theorem next class, but today let's note a couple of things.

First, $\binom{n}{k}_q$ has degree k(n-k), which we could have checked from the degrees of the q-factorial terms in its definition.

Second, this theorem makes clear that $\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ n-k \end{bmatrix}_q$, since the expression is symmetric with respect to k and n-k.

Third, it exposes another symmetry, that the coefficients of each q-binomial are palindromic. This follows from the one-to-one correspondence in which a Young Diagram of a partition of l inside a $k \times (n-k)$ box has its complement taken and is rotated 180 degrees, to produce the Young Diagram of a partition of k(n-k)-l inside a $k \times (n-k)$ box.

Finally, taking q=1, we have the $\binom{n}{k}$ equals the total number of partitions that fit in a $k \times n - k$ box. How can we understand this combinatorially? Observe that the right and bottom boundary of the Young Diagram uniquely defines a path from the bottom left corner to the top right corner of the $k \times (n-k)$ box, made of unit steps going up or right. There are k ups and n-k rights, and their sequence defines a subset of k of k. In this way, we see that k-binomials k-are a more refined count of subset of k-binomials k-b