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1 Introduction

Today, we’re going to introduce q-analogues, which are a refinement of binomial coeffi-
cients. To understand q-analogues combinatorially, we’ll show how they arise from counting
problems on the lattice of vector spaces over a finite field.

2 Review of Finite Fields

We expect you already know what a field is: an algebraic structure in which you can add,
subtract, multiply, and divide, and has 0 and 1 elements that behave like you’d expect them
to. You can look up the field axioms.

A field may have 1 + 1 + · · ·+ 1 = 0 for some number of ones. In fact, for a finite field, this
must be the case for some number of ones, and the minimum such number of ones is the
field’s characteristic. There is exactly one finite field with q elements (written Fq) for each
q that is a power of a prime, q = pm. This field has characteristic p. When m = 1, the field
Fp is the familiar field Z/pZ of integers modulo p.

3 The Subspace Lattice and Flags

Let Fn
q be the vector space of n-tuples of elements of the field Fq. We’re going to concentrate

on one combinatorial object, the lattice of linear subspaces of Fn
q ordered by inclusion.

Definition 1 Define Ln(q) to be the lattice of linear subspaces of Fn
q partially ordered by

inclusion. The meet V ∧W is given by the intersection V ∩W and the join V ∨W by the
sum V +W = span(V ∪W ).

In the definition of Ln(q), we do not take the empty set to be a subspace.

Definition 2 A flag (also called a complete flag) is a maximal chain in Ln(q).
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So, a flag is a sequence of subspaces one dimension higher than and containing the previous.
For the chain to be maximal, it must contain n+ 1 subspaces, whose dimensions start at 0
and count up through n.

{0} = E0 ⊂ E1 ⊂ · · · ⊂ En = Fn
q .

Note that dim(Ei) = i.

Here’s the question we’d like to answer:

Question 3 How many flags of Fn
q are there (call this fn(q))?

Since one can specify a flag by choosing spaces E0, E1, . . . , En in sequence, we will count
the number of choices at each step.

E0: No choice, must be {0}.

E1: We’re choosing a line through the origin. It suffices to choose any nonzero point
v ∈ Fn

q −{0} and let E1 be the subspace its spans 〈v〉, and there are qn− 1 ways to do this.
But, since 〈v〉 = 〈λv〉 for any nonzero scalar λ of Fq, we’re overcounting by a factor of q−1.
So, there are qn−1

q−1 choices.

E2: We wish to extend E1 = 〈v1〉 by adding a new vector so that E2 = 〈v1, v2〉. Any
v2 ∈ Fn

q − 〈v1〉 works, of which there are qn − q. But since 〈v1, v2〉 = 〈v1, λv2 + w〉 for any

λ ∈ Fq − {0} and w ∈ E1, there are qn−q
q(q−1) choices.

Ek: In general, having chosen Ek−1 = 〈v1, v2, . . . , vk−1〉, there are qn − qk−1 choices of
vk ∈ Fn

q−Ek−1, and since 〈v1, v2, · · · , vk−1, vk〉 = 〈v1, v2, · · · , vk−1, λvk + w〉 for λ ∈ Fq−{0}
and w ∈ Ek−1, there are qn−qk−1

(q−1)qk−1 choices at this step.

Multiplying out the number of choices at each step, we find that

fn(q) =
qn − 1

q − 1
× qn − q

(q − 1)q
× · · · × qn − qn−1

(q − 1)qn−1
,

or simplified,

fn(q) =
qn − 1

q − 1
× qn−1 − 1

q − 1
× · · · × q − 1

q − 1
.

We note that the top and bottom contain equally many factors of q − 1, and cancelling
them allows fn(q) to be expressed as a polynomial.

fn(q) =
(
1 + q + · · ·+ qn−1

) (
1 + q + · · ·+ qn−2

)
· · ·
(
1 + q + q2

)
(1 + q) (1).
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4 q-Analogues

We’ll see in this section how the notions and formulas we’ve derived for the lattice Ln(q)
look like polynomial-in-q versions of the corresponding notions for the Boolean algebra Bn.
We call these q-analogues.

We note that plugging in q = 1 gives fn(1) = n!. Though there’s no field with one element,
n! is the number of maximal chains of the Boolean algebra Bn. (There is a not fully-
understood notion of Bn acting like a ”‘field with one element” version of Ln(q)) Each
maximal chain of Bn is given by a permutation of [n], analogous to a flag being a maximal
chain of Fn

q . Looking at the products

fn(q) =
(
1 + q + · · ·+ qn−1

) (
1 + q + · · ·+ qn−2

)
· · ·
(
1 + q + q2

)
(1 + q)

and
n! = n× (n− 1)× · · · × 2× 1,

it makes sense to identify each number k with it’s q-analogue 1 + q + · · ·+ qk−1, which we
abbreviate as [k]q.

Here’s a summary of the q-analogue correspondence.

Concept q-analogue

n [n]q = 1 + q + · · · qn−1

n! [n]q! = [1]q[2]q · · · [n]q
Bn Ln(q)
Sn flags in Fn

q(
n
k

) [
n
k

]
q

5 q-binomial coefficients

The rest of today’s lecture will look at the the last row of the table, the q-analogue of
(
n
k

)
,

which we’ll denote as
[
n
k

]
q
. If

(
n
k

)
is the number of subsets of n of size k, then

[
n
k

]
q

should

be the number of k-dimensional subspaces of Fn
q (k-subpaces for short). We’ll show that(

n
k

)
is related to [n]! in the same way as

(
n
k

)
to factorials.

Lemma 4 [
n

k

]
q

=
[n]q!

[k]q![n− k]q!

Proof: We’ll count in two ways the pairs (V,E) where V is a k-subspace of Fn
q and E is a

flag (E0, . . . , En) of Fn
q for which Ek = V .

13-3



For the first way, first choose a flag E; there are [n]q! choices. Since each E has a unique
subspace V = Ek, there are [n]q! pairs.

For the second way, fix V , of which there are
[
n
k

]
q

choices. Now, we’re left to choose

(E0, . . . , Ek−1) with
{0} = E0 ⊂ E1 ⊂ · · · ⊂ Ek = V

and (Ek+1, . . . , En) with

V = Ek ⊂ Ek+1 ⊂ · · · ⊂ En = Fn
q .

The first choice corresponds to a flag in Fk
q , of which there are [k]q!. For the second, we

note that the sublattice of Fn
q of subspaces containing the k-subspace V is isomorphic to

Ln−k(q) via modding out by V . So, there are as many choices as flags of Ln−k(q), of which
there are [n− k]q!. So, the overall number of pairs is[

n

k

]
q

× [k]q!× [n− k]q!.

So,

[n]q! =

[
n

k

]
q

× [k]q!× [n− k]q!,

which gives the result. 2

Let’s work through an example.

Example 5 How many 2-subspaces are there of F4
q?

Answer 6[
4

2

]
q

=
[4]q!

[2]q![2]q!
=

(q4 − 1)(q3 − 1)(q2 − 1)(q − 1)

(q2 − 1)(q − 1)× (q2 − 1)(q − 1)
= (q2+1)(q2+q+1) = q4+q3+2q2+q+1

Note how the rational functions cancel to produced a polynomial, moreover one whose
coefficients are non-negative integers. This should tip you off that these coefficients are
counting something. But before we get to that, let’s show that this is true in general by
means of a recurrence.

Lemma 7 [
n

k

]
q

=

[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

qn−k

(Note that when q = 1, we get the usual recurrence for
(
n
k

)
.)
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Proof: Fix a hyperplane ((n − 1)-subspace) H ⊂ Fn
q . We’ll split the k-subspaces V that[

n
k

]
q

counts into two categories.

If V ⊂ H, there are
[
n−1
k

]
q

choices of V .

If V 6⊂ H, then let W be the (k − 1)-subspace W = H ∩ V . There are
[
n−1
k−1

]
q

possible W

within H. For each W , the k-subspaces V with W = H ∩ V are exactly those k-subspaces
V with W ⊂ V ⊂ Fn

q , excluding those with W ⊂ V ⊂ H. Modding out by W , these are in
one-to-one correspondence with lines (1-subspaces) in Fn

q /W and H/W respectively, so the
number of eligible V is

[n− k + 1]q − [n− k]q = qn−k.

So, overall, there are
[
n−1
k−1

]
q
qn−k k-subspaces V with V 6⊂ H. 2

From the recurrence, we see that we can build the q-analogue of Pascal’s Triangle, where
each entry is in row i is the the entry above it plus qi times the entry to its left.

1 1 1 1 1
1 q + 1 q2 + q + 1 q3 + q2 + q + 1
1 q2 + q + 1 q4 + q3 + 2q2 + q + 1
1 q3 + q2 + q + 1
1

6 Partitions

Now that we know that the coefficients of the q-binomial
[
n
k

]
q

are non-negative integers, we’d
like to understand what they count. We’ll see that they count a certain type of partition.

Definition 8 A partition of l is a sequence of natural numbers λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0
whose sum is l.

Partitions are like the compositions we defined before, except reorderings, which is achieved
by writing the parts in decreasing order. We may have fewer than l parts by having all
remaining parts equal zero. For example, there are five partitions of 4, which are (omitting
zero parts) 4, 3+1, 2+2, 2+1+1, and 1+1+1+1.

Definition 9 The Young Diagram of a partition of l is the union of λ1 boxes in row 1,
λ2 boxes in row 2, and so on. Equivalently, it is the set of pairs (i, j) with i, j > 0 and
j ≤ λi. We say that a partition fits in an a× b box if all pairs (i, j) have i ≤ a and j ≤ b.
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Figure 1: Young Diagrams of all partitions of the numbers 1 through 8. From Wikipedia.
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Theorem 10 [
n

k

]
q

=

k(n−k)∑
l=0

alq
l,

where al is number of partitions of l whose Young Diagram fits in a k × (n− k) box.

For example, corresponding to the polynomial
[
4
2

]
q

= q4 + q3 + 2q2 + q + 1 is the fact that
one partition of four fits in a 2 × 2 box, as do one partition of 3, two partitions of 2, one
partition of 1, and one partition of 0 (the empty partition), which can be counted from in
Figure 1.

We’ll prove the theorem next class, but today let’s note a couple of things.

First,
[
n
k

]
q

has degree k(n − k), which we could have checked from the degrees of the q-
factorial terms in its definition.

Second, this theorem makes clear that
[
n
k

]
q

=
[

n
n−k

]
q
, since the expression is symmetric with

respect to k and n− k.

Third, it exposes another symmetry, that the coefficients of each q-binomial are palindromic.
This follows from the one-to-one correspondence in which a Young Diagram of a partition
of l inside a k×(n−k) box has its complement taken and is rotated 180 degrees, to produce
the Young Diagram of a partition of k(n− k)− l inside a k × (n− k) box.

Finally, taking q = 1, we have the
(
n
k

)
equals the total number of partitions that fit in

a k × n − k box. How can we understand this combinatorially? Observe that the right
and bottom boundary of the Young Diagram uniquely defines a path from the bottom left
corner to the top right corner of the k × (n− k) box, made of unit steps going up or right.
There are k ups and n− k rights, and their sequence defines a subset of k of n. In this way,
we see that q-binomials

[
n
k

]
q

are a more refined count of subset of n of size k, groups by
how much area the corresponding path bounds.

13-7


