
18.312: Algebraic Combinatorics Lionel Levine

Lecture 14

Lecture date: March 31, 2011 Notes by: Leon Zhou

1 q-binomial coefficients

1.1 Connection to partitions

Let al = #{partitions λ of l
∣∣the Young diagram of λ fits in a box of dimensions k × (n− k)}.

Theorem 1 [
n

k

]
q

=

k(n−k)∑
l=0

alq
l

Proof: Fix a flag E0 ⊂ E1 ⊂ . . . ⊂ En of Fnq . Given a k-subspace V , let di = dim(V ∩Ei),
and write d = (d0, d1, . . . dn).

Now, given d, let f(d) = #(k-subspaces V ⊂ Fnq |dimV ∩ Ei = di, i ∈ {0, . . . n}}.

Lemma 2 f(d) = qm1−1qm2−2 . . . qmk−k, where mi = min{j|dj = i}

Recall from last time: #{lines {0} ∈ L ⊂ V |L 6⊂ H} = [n]q − [n− 1]q = qn−1, where H is a
hyperplane in Fnq .

We want to count the number of ways to choose a k-subspace V .

Define Vi = V ∩ Emi , where dimVi = i. Choosing V is the same as choosing the sequence
(Vi)0≤i≤k, since the intersections of V with our flag define V .

To choose V1 = V ∩ Em1 is to choose a line in Em1 that is not contained in Em1−1. As we
recalled, there are qm1−1 ways to do this.

To choose V2 = V ∩ Em2 is to choose a line in Em2/V1 that is not contained in Em2−1/V1.
There are qm2−2 ways to do this.

In general, to choose Vj = V ∩Emj/Vj−1 is to choose a line in Emj/Vj−1 that is not contained
in Emj−1/Vj−1, and there are qmj−j ways to do this.

—
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So
[
n
k

]
q

is the number of k-subspaces of Fnq . But this is equal to∑
d

f(d)

where the sum ranges over all sequences d = (d0, . . . dn) with 0 = d0 ≤ · · · ≤ dn = k and
di+1 − di ≤ 1 for all i.

Given a sequence d, we form a southwest lattice path, where step i is

• S, if di+1 = di, and

• W, if di+1 = di + 1.

starting at (k, 0) and ending at (0, k − n).

This draws a Young diagram for a partition we can call λ; then |λ| is the number of boxes
above the lattice path, which is equal to

c1 + c2 + . . .+ ck

where cj is the height of column j.

Note that ci = mi − i, since all but ci of the steps before column i are westward.

So [
n

k

]
q

=
∑
d

f(d) =
∑

λ in box

q|λ| =

k(n−k)∑
l=0

alq
l

1.2 The q-Binomial Theorem

So there’s this Binomial Theorem (x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k and we might ask whether we

can come up with an analagous formula in q-binomial coefficients.

As it turns out, we can. Consider the algebra A = Q[q] < x, y > /(yx−qxy), the polynomials
in three variables q, x, y over Q in which q commutes with everything but yx = qxy. Say
we try to do some binomial expansion:
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(x+ y)3 = (x+ y)(x+ y)(x+ y)

= xxx+ xxy + xyx+ yxx+ xyy + yxy + yyx+ yyy

= xxx+ xxy + qxxy + qx(qxy) + xyy + qxyy + q(qxy)y + yyy

= x3 + x2y + qx2y + q2x2y + xy2 + qxy2 + q2xy2 + y3

= x3 + (1 + q + q2)x2y + (1 + q + q2)xy2 + y3

=

3∑
k=0

[
n

k

]
q

xkyn−k

As it turns out, this is true in general (see homework #5).

1.3 Counting irreducible monic polynomials

Question 3 How many irreducible monic polynomials f(x) = a0 + a1x + . . . + anx
n of

degree n are there in Fq[x]?

Say we make a list f1(x), f2(x) . . . of all the monic irreducible polynomials in Fq[x], and
let di = deg(fi(x)). By unique factorization, any monic polynomial f(x) ∈ Fq[x] can be

written uniquely as a product
∏
i≥1

fi(x)ai (where all but finitely many ai are 0).

This leads to a bijection between the set of monic polynomials of degree n and the set of
sequences

(a1, a2, . . .) such that a1d1 + a2d2 + . . . = n

In other words, partitions of n into piles of size di.

We can write a generating function for these partitions:

1

(1− xd1)(1− xd2) . . .

Then, since the number of monic polynomials in Fq[x] of degree n in just qn, our bijection
tells us that we have

1

(1− xd1)(1− xd2) . . .
=

∞∑
n=0

qnxn =
1

1− qx
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Taking the log of both sides:

log
1

1− xd1
+ log

1

1− xd2
+ . . . = log

1

1− qx

=
∑
n≥1

(qx)n

n

We can rewrite the left hand side as

∞∑
d=1

Nd log
1

1− xd

where Nd is the number of irreducible monic polynomials of degree d over Fq, since there
are Nd terms in the left hand sum for which di = d. And

∞∑
d=1

Nd log
1

1− xd
=

∞∑
d=1

Nd

∑
j≥1

xdj

j
=
∑
n≥1

∑
d|n

Nd

n/d
xn

where the second equality is obtained by substituting n for dj.

Equating coefficients: ∑
n≥1

∑
d|n

Nd

n/d
xn =

∑
n≥1

(qx)n

n

=⇒ qn

n
=

1

n

∑
d|n

dNd

qn =
∑
d|n

dNd

Möbius Inversion
=⇒ nNn =

∑
d|n

qdµ(
n

d
)

Nn =
1

n

∑
d|n

µ
(n
d

)
qd.

Hey, this expression on the right is equal to the number of rotation classes of primitive
necklaces of length n, using q colors of beads!

Example 4 If p is a prime, then Np = 1
p(qp − q).
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2 Hyperplane Arrangements

2.1 Definitions

Definition 5 Given a vector space V with dimV = l, a hyperplane arrangement is a finite
set of hyperplanes

A = {H1, . . . ,Hn|Hi is an (l − 1)-dimentional subspace of V }

A is defined over Z if Hi = {x ∈ V |
∑
cijxi = bi; bi, cij ∈ Z}– that is, if the equations

defining the Hi have integer coefficients.

Note that we implicitly take a basis for V in this definition.

Definition 6 The intersection poset of A is the set of subspaces

L(A) =

{⋂
i∈I

Hi | I ⊆ [n]

}

ordered by inclusion.

Note that ∅ is not actually a subspace of V , so L(A) may not have a minimal element. It
does have a maximal element, V .

Definition 7 A is central if every Hi passes through the origin; i.e., if bi = 0 in every
defining equation.

On the other hand, if A is central, then it does have a minimal element,
⋂n
i=1Hi, which

contains 0 and is thus nonempty. In this case L(A) is actually a lattice, where Hi ∧Hj =
Hi ∩Hj .

2.2 Connection to finite fields

Given a hyperplane arrangement which is defined over Z, we can take the defining equations∑
cijxi = bi (mod q) to get a hyperplane arrangement over Fq.

Question 8 How many points of Flq are in the complement of the arrangement? i.e., what

is #
(
Flq −

⋃n
i=1Hi

)
?
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We can use the Principle of Inclusion-Exclusion:

ql −
n∑
i=1

ql−1 +
∑

i,j,Hi∩Hj 6=0

ql−2 − . . .

That doesn’t seem to be very productive. In general, when we see complicated subscripts
on sums like we have here, that’s a sign that we should try something else, like Möbius
Inversion.
——————–

Let χ(A, q) = #(Flq −
⋃n
i=1Hi) be the size of the complement of A.

Lemma 9
χ(A, q) =

∑
X∈L(A)

µ(X, 1̂)qdimX

Recall that 1̂ = V = Flq.

Proof: For Y ∈ L(A), let f(Y ) = #{v ∈ Flq | v ∈ Y and v /∈ Z for Z < Y }.

Then χ(A, q) = f(1̂), and ∑
Z≤Y

f(Z) = #Y = qdimY

Define g(Y ) := qdimY .

Invert:
f(Y ) =

∑
Z≤Y

µ(Z, Y )qdimY

Let Y = 1̂; then we are done. 2

The polynomial χ(A, q) is called the characteristic polynomial of A.

Example 10 The Braid arrangement is Bn := {Hij |1 ≤ i < j ≤ n}, Hij = {xi = xj} in
Fnq .

χ(Bn, q) = #{v ∈ Fnq |all the coordinates vi, . . . vn are distinct}

=

(
q

n

)
n! = q(q − 1)(q − 2) . . . (q − n+ 1)

2
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