18.312: Algebraic Combinatorics Lionel Levine

Lecture 14
Lecture date: March 31, 2011 Notes by: Leon Zhou

1 ¢-binomial coefficients

1.1 Connection to partitions

Let a; = #{partitions A of [|the Young diagram of A fits in a box of dimensions k x (n — k)}.

Theorem 1
k(n—k)

n
M = > ad
q =0

Proof: Fix a flag Fy C 1 C ... C E, of F. Given a k-subspace V, let d; = dim(V N E;),
and write d = (dp, dy,...dy,).

Now, given d, let f(d) = #(k-subspaces V C Fy|dimV N E; = d;,i € {0,...n}}.

Lemma 2 f(d) = g™ tqm2~2. .. ¢™ % where m; = min{j|d; = i}

Recall from last time: #{lines {0} € LC V|L ¢ H} = [n], — [n— 1], = ¢"!, where H is a
hyperplane in Fg.

We want to count the number of ways to choose a k-subspace V.

Define V; = V N E,,,, where dim V; = 7. Choosing V is the same as choosing the sequence
(Vi)o<i<k, since the intersections of V' with our flag define V.

To choose Vi =V N E,,, is to choose a line in E,,, that is not contained in E,,, 1. As we

recalled, there are ¢™'~! ways to do this.

To choose Vo =V N E,,, is to choose a line in E,,,/V; that is not contained in E,,,_1/Vj.
There are ¢™2~2 ways to do this.

In general, to choose V; = VﬂEmj / Vj_1 is to choose a line in Em]. / Vj—_1 that is not contained
in Ep;—1/Vj-1, and there are ¢™~7 ways to do this.
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So [Z]q is the number of k-subspaces of Fy. But this is equal to
> @)
d

where the sum ranges over all sequences d = (dp,...d,) with 0 =dy < --- < d,, = k and
div1 — d; <1 for all 4.

Given a sequence d, we form a southwest lattice path, where step i is

o S, if di+1 = di, and
o W, if divt1 =d; + 1.

starting at (k,0) and ending at (0,k — n).

This draws a Young diagram for a partition we can call A; then |\| is the number of boxes
above the lattice path, which is equal to

c1+c+ ...+ ck

where ¢; is the height of column j.
Note that ¢; = m; — 1, since all but ¢; of the steps before column ¢ are westward.

So
k(n—k)

HE MR >

A in box

1.2 The ¢-Binomial Theorem

n
n
So there’s this Binomial Theorem (x +y)" = Z (k) 2Fy" % and we might ask whether we
k=0
can come up with an analagous formula in g-binomial coefficients.

As it turns out, we can. Consider the algebra A = Q[q] < z,y > /(yz—qzy), the polynomials
in three variables ¢, z,y over Q in which ¢ commutes with everything but yz = gxy. Say
we try to do some binomial expansion:
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(@+y)?®=(@+y)(z+y)(@+y)
=TT + TTY + TYT + Yyrr + cYY + YrYy + yyr + yyy
= rxx + 22y + qrTy + qr(qry) + Yy + qryy + 9(qry)y + yyy
=2° + 2%y + g2’y + 2Py + 2y’ + gy’ + Cay’ + P
=28+ (L+q+ )y + L+ g+ ¢)ay® + ¢

3 n
|: :| :Ekyn—k
= k q

k=0
As it turns out, this is true in general (see homework #5).

1.3 Counting irreducible monic polynomials

Question 3 How many irreducible monic polynomials f(x) = ag + a1x + ... + apx™ of
degree n are there in Fqlx]?

Say we make a list fi(x), fo(x)... of all the monic irreducible polynomials in F,[z], and
let d; = deg(fi(z)). By unique factorization, any monic polynomial f(z) € F4[z] can be
written uniquely as a product H fi(z)® (where all but finitely many a; are 0).

i>1

This leads to a bijection between the set of monic polynomials of degree n and the set of
sequences
(a1,as,...) such that ajd; +asda +...=n

In other words, partitions of n into piles of size d;.

We can write a generating function for these partitions:

1
(1 —zdh)(1—a®)...

Then, since the number of monic polynomials in F,[z] of degree n in just ¢", our bijection
tells us that we have

1 - 1
_ nn:
(1—xd1)(1—xd2)..._ngoq$ 1—gqx
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Taking the log of both sides:

1
1—qzx

-2

n>1

1
log —+...=log

L 1
PR

1—

We can rewrite the left hand side as

- 1
ZNd log 1
d=1

where Ny is the number of irreducible monic polynomials of degree d over I, since there
are N4 terms in the left hand sum for which d; = d. And

S Nalos g = N Y5 = 3 e

j>1 n>1 djn
where the second equality is obtained by substituting n for dj.

Equating coefficients:

BPBETTEED P
n/d n

n>1 djn n>1

% Z AN,

d|n

= dNy

din

Moébius Inversion . d N
=N, =Y qtn()
din

T

din
Hey, this expression on the right is equal to the number of rotation classes of primitive

necklaces of length n, using ¢ colors of beads!

Example 4 If p is a prime, then N, = %(qp —q).
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2 Hyperplane Arrangements

2.1 Definitions

Definition 5 Given a vector space V' with dimV = [, a hyperplane arrangement is a finite
set of hyperplanes

A={Hy,...,H,|H; is an (I — 1)-dimentional subspace of V'}

A is defined over Z if H; = {x € V| cijxi = bi;bi,cij € Z}— that is, if the equations
defining the H; have integer coefficients.

Note that we implicitly take a basis for V' in this definition.

Definition 6 The intersection poset of A is the set of subspaces

L(A) = {mHZ- TC [n]}

i€l

ordered by inclusion.

Note that ) is not actually a subspace of V', so L(A) may not have a minimal element. It
does have a maximal element, V.

Definition 7 A is central if every H; passes through the origin; i.e., if by = 0 in every
defining equation.

On the other hand, if A is central, then it does have a minimal element, (", H;, which
contains 0 and is thus nonempty. In this case L(A) is actually a lattice, where H; A H; =
H; N Hj.

2.2 Connection to finite fields

Given a hyperplane arrangement which is defined over Z, we can take the defining equations
Y. cijz; =b; (mod q) to get a hyperplane arrangement over IF,.

Question 8 How many points of qu are in the complement of the arrangement? i.e., what
is # (Fg — Uiy Hi) 7
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We can use the Principle of Inclusion-Exclusion:
n
P S N S
i=1 4,5, HiNH ;70

That doesn’t seem to be very productive. In general, when we see complicated subscripts
on sums like we have here, that’s a sign that we should try something else, like M&bius
Inversion.

Let x(A,q) = #(F, — U}, H;) be the size of the complement of A.

Lemma 9

X(A,q) = > p(X, T)gtmX
XEL(A)

Recall that 1 =V =F..
Proof: For Y € L(A), let f(Y)=#{veF,|veY andv ¢ Z for Z <Y}.

Then x(A4,q) = f(1), and .
> f(Z)=#Y = ¢

Z<Y
Define g(Y) := ¢4imY.

Invert:

Let Y = 1; then we are done. O

The polynomial x (A4, q) is called the characteristic polynomial of A.

Example 10 The Braid arrangement is By, = {H;;|1 < i < j < n},Hyj = {z; = z;} in

Fr.
X(Bn,q) = #{v € Fjall the coordinates vj, ... v, are distinct}
q
- (n)n!=q<q—1><q—2>...<q—n+1>
a
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