
18.312: Algebraic Combinatorics Lionel Levine

Lecture 15

Lecture date: April 15, 2011 Notes by: Jacob Bower

1 The Braid Arrangement

In the last lecture we were introduced to the characteristic polynomial, χ(A, q), of the
hyperplane arrangement A = {H1, ...,Hn} which was defined as:

χ(A, q) = #(Flq − ∪ni=1Hi) =
∑

X∈L(A)

µ(X, 1̂)qdimX .

We were then introduced to the Braid arrangement which we redefine here.

Definition 1 The Braid arrangement, Bl is defined as:

Bl = {Hij}1≤i<j≤l.

Where:
Hij = {v ∈ Flq|vi = vj}.

We start our study of the Braid arrangment by studying the intersection poset (defined last
lecture) of Bl. We find that:

L(Bl) = Π̂l = lattice of partitions of l,

With minimum element:

∩Hij = {v ∈ Flq|v1 = v2 = ... = vl}.

Next we wish to study the characteristic polynomial of Bl. To begin we can choose v1 in q
ways. We can then choose v2 in q − 1 ways because it must be distinct from v1. Similarly
we can choose v3 in q− 2 ways because it must be distinct from v1 and v2. Continuing this
line of reasoning we find:

χ(Bl, q) = q(q − 1)(q − 2)...(q − l + 1).
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You may recall from our study of Stirling numbers that that this is the same equation
appeared during our study signed stirling numbers of the first kind. Given the signed
stirling numbers of the first kind, s(l, k), we have:

χ(Bl, q) =
l∑

k=1

s(l, k)qk.

It is interesting that signed Stirling numbers of the first kind appear here, because we recall
that it is signed Stirling numbers of the first kind that count partitions, and we have already
seen a close connection between Bl and partitions. It turns out that they key to the relation
here is Stirling reciprocity, which we have already seen in class, but for which we can now
present a different proof. To begin we recall our definition of Stirling numbers of the second
kind S(k, j).

S(k, j) = #{partitions of [k] into j nonempty parts}

= #{λ ∈ Πk : |λ| = j.}

If we consider some fixed π ∈ Πl where |π| = k we can then write:

S(k, j) = #{λ ∈ Πl : |λ| = j, λ ≥ π}.

For signed Stirling numbers of the first kind we have seen:

l∑
k=1

s(l, k)qk = χ(Bl, q) =
∑

X∈L(Bn)

µ(X, 1̂)qdimX .

Which means:
s(l, k) =

∑
X∈L(Bn)
dimX=k

µ(X, 1̂)

=
∑
π∈Π̂l
|π|=k

µ(0̂, π).

We are now prepared to prove Stirling reciporcity.

Theorem 2 If we have signed Stirling numbers of the first kind, s(l,k), and Stirling numbers
of the second kind, S(k,j), then:

l∑
k=j

s(l, k)S(k, j) = δjl =
{

0 if j 6= l
1 if j = l
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This concludes our discussion of the Braid arrangement.

Proof: Using the definitions of s(l,k) and S(k,j) we have seen above we have:

l∑
k=j

s(l, k)S(k, j) =
l∑

k=j

(
∑
π∈Π̂l
|π|=k

µ(0̂, π)) · (#{λ ∈ Πl : |λ| = j, λ ≥ π})

=
∑
λ∈Πl
|λ|=j

∑
π≤λ

µ(0̂, π)ζ(π, λ)

=
∑
λ∈Πl
|λ|=j

µζ(0̂, λ)

= δjl =
{

0 if j 6= l
1 if j = l

2

2 Counting Connected components in Rl

We now wish to take our study of hyperplanes to the real numbers. Suppose we have the
hyperplane:

A = {H1, ...,Hn}, defined over Z

and we let:
γ(A) = #{connected components of Rl − ∪ni=1Hi}.

We will study how γ(A) is related to the characteristic polynomial of the hyperplane A.
We will see γ(A) = |χ(A,−1)|, which can be proved by showing the sides satisfy the same
recurrence. Before we complete this proof we must introduce a few definitions and lemmas
that will be useful.

Definition 3 The deletion of A, which we call A′ , is:

A′ = {H1, ...,Hn−1}.

That is, it is the set of (n− 1) hyperplanes in Rl.

Definition 4 The restriction of A, which we call A′′ , is:

A′′ = {H1 ∩Hn, ...,Hn−1 ∩Hn}.

That is, it is a set of (n− 1) hyperplanes in Rl−1.
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Lemma 5 Given a hyperplane A with deletion A′ and restriction A′′ we have:

χ(A, q) = χ(A′, q)− χ(A′′, q).

Proof: To prove this lemma we look at sets created by our hyperplanes. We have:

(Flq − ∪n−1
i=1 Hi) = (Flq − ∪ni=1Hi) t (Hn − ∪n−1

i=1 (Hi ∩Hn)).

Examining the cardinalities of each part here we find:

χ(A′, q) = χ(A, q) + χ(A′′, q).

This is equivalent to the statement in our lemma. 2

We may be interested why there is no q in our recurrence. This is because q enters the
equation only through the base case. For the base case of an empty arrangement φl in Flq
we have:

χ(φl, ) = #Flq = ql.

Next we examine γ(A).

Lemma 6 Given a hyperplane A with deletion A′ and restriction A′′ we have:

γ(A) = γ(A′) + γ(A′′).

Proof: We observe that each connected component of Hn − ∪n−1
i=1 (Hi ∩ Hn) partitions a

connected component of Rl − ∪n−1
i=1 Hi into two parts. This means:

γ(A) = #{components of Rl − ∪n−1
i=1 (Hi)}

= #{components of (Rl − ∪n−1
i=1 Hi)}+ #{components of (Hn − ∪n−1

i=1 (Hi ∩Hn))}

= γ(A′) + γ(A′′).

This completes our proof. 2

We are now prepared to present our relation between χ(A, q) and γ(A).

Theorem 7 If we have A = {H1, ...Hn} defined over Z and γ(A) as defined above then:

γ(A) = |χ(A,−1)|.

15-4



Proof: To begin our proof we define:

γ̃(A) = (−1)dimAγ(A).

We will seek to prove that γ̃(A) equals χ(A, q) by showing that they satisfy the same
recurrence (with the same base case). We have already seen the recurrence satisfied by
χ(A, q) in Lemma 5 so all we need to study is γ̃(A). From Lemma 6 we have:

γ̃(A) = (−1)dimAγ(A).

= (−1)dimA(γ(A′) + γ(A′′)).

Because dimA′ = dimA and dimA′′ = dimA− 1 we can write this as:

γ̃(A) = (−1)dimA
′
γ(A′)− (−1)dimA

′′
γ(A′′).

= γ̃(A′)− γ̃(A′′).

Comparing this to the results of Lemma 5 it is thus clear that γ̃(A) and χ(A, q) satisfy the
same recurrence equation so to prove they are equal we just need to show they have the
same base case. For the base case we consider the empty arrangement, φl. For γ̃ we have:

γ̃(φl) = (−1)l · 1.

We have seen χ(φl, q) = ql so considering q = −1 we have:

χ(φl,−1) = (−1)l.

We then conclude that because γ̃(A) and χ(A, q) satisfy the same recurrence equation with
the same base case that:

γ̃(A) = χ(A, q).

Considering absolute values we then have:

γ(A) = |γ̃(A)| = |χ(A, q)|.

This completes our proof. 2

3 Graph Theory

We now move on to a study of graph theory. We begin with a few definitions.

Definition 8 A graph, G, is defined as a set V of verices and a set E of edges, where
E ⊂ V × V . We often represent G by drawing the set V as a set of dots and drawing a line
between two elements if there is a single edge that contains both vertices.
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Definition 9 A proper coloring of G (with q colors) is a map:

c : V → [q],

satisfying c(i) 6= c(j) for all edges (i, j) ∈ E.

Because we have been discussing hyperplanes we now take a look at the relation between
hyperplanes and graphs.

Definition 10 Given a graph, G, on vertex set [n] and edge set E, the graphical arrange-
ment AG is the set of hyperplanes {xi = xj}(i,j)∈E.

There is also a relation between colorings of a graph, G, and the characteristic polynomial
of AG. We have:

#{proper colorings of G with q colors}

= {(x1, ..., xn) ∈ Fnq |xi 6= xjforalledges(i, j) ∈ E}

= Fnq − ∪e∈EHe

χ(AG, q).

We call this the chromatic polynomial of G.

4 Hall’s Marriage Theorem

To begin our study of Hall’s Marriage theorem we first introduce a set of new definitions:

Definition 11 A graph G = (V,E) is called bipartite if it has a proper 2-coloring. This is
equivalent to saying:

V = X t Y,

such that there are no edges withing X and no edges within Y (i.e. E ⊂ (X×Y )∪(Y ×X)).

Definition 12 A matching of a graph G is a set of edges e1, ..., ek ∈ E such that ei ∩ ej =
∅,∀i 6= j.

Definition 13 A complete matching (or perfect matching) is a matching e1, ..., ek such that
V = e1 ∪ ... ∪ ek.
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Definition 14 Given A ⊆ V the neighborhood of A, Γ(A) is defined as:

Γ(A) = {v ∈ V |∃a ∈ A,∃e ∈ E, s.t. e = (a, v)}.

One interesting question that can be asked about bipartite graphs is when they will have
a complete matching. If we have a graph G = (X t Y,E) that has a complete matching
(x1, y1), ..., (xn, yn) then for any A ⊆ X it is obvious we must have:

|Γ(A)| ≥ |A|.

This is because at least y1, ..., yk must be in Γ(x1, ..., xk).

Theorem 15 Hall’s Marriage Theorem states that a bipartite graph G = (X t Y,E) with
|X| = |Y | has a complete matching if and only if:

|Γ(A)| ≥ |A|, ∀A ⊆ X.

Proof of this theorem is provided in the next lecture.
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