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1 Matchings and Hall’s Marriage Theorem

Theorem 1 (Hall) Let G = (V,E) be a finite bipartite graph where V = X ∪ Y with
X ∩ Y = ∅ and |X| = |Y |. Suppose that for all subsets A ⊂ X we have |Γ(A)| ≥ |A| (recall
that Γ(A) = {y ∈ Y | (x, y) ∈ E for some x ∈ A}). Then G has a perfect matching (or
complete matching).

(Alternatively, we can remove the condition that |X| = |Y | and change the conclusion to
say that G has a matching which involves every vertex of X.)

Proof: Given a partial matching M with m edges, we will produce a partial matching M ′

with m+ 1 edges. It is enough to find a path x0y1x1 . . . ykxkyk+1 with x0 6∈ H, yk+1 6∈M ,
and (yi, xi) ∈ M for i = 1, 2, . . . , k. Given such a path, the set of edges M ′ =

(
M \

{(yi, xi)}ki=1

)
∪ {(xi, yi+1)}ki=0 is a matching where |M ′| = |M |+ 1.
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To construct the path, suppose that there exists some x0 ∈ X which is unmatched in M .
The condition |Γ({x0})| ≥ 1 implies that there exists y1 ∈ Y such that (x0, y1) ∈ E. If
y1 is unmatched in M , then we have a path x0y1 with the desired properties. Otherwise,
there exists x1 ∈ X \ {x0} such that (y1, x1) ∈ M ; the condition |Γ({x0, x1})| ≥ 2 implies
that there exists y2 6= y1 such that (xr(2), y2) ∈ E where r(2) is either 0 or 1. In general,
given {x0, x1, . . . , xi−1} we can find some yi 6∈ {y1, . . . , yi−1} such that (yi, xr(i)) ∈ E for
some r(i) ∈ {0, 1, . . . , i−1}. This process of finding new yi must terminate since Y is finite.
We have constructed a set {x0, y1, x1, . . . , yl−1, xl−1, yl} such that (yi, xi) ∈ M for all M ,
x0 6∈ M , and yl 6∈ M by construction. However, xi, yi+1 may not be an edge for some i.
To this end we take the subset yl, xr(l), yr(l), xr2(l), yr2(l), . . . which must terminate with the
last two terms y1, x0 since r(1) = 0 and rn(k) > rn+1(k) for all n. In the above diagram,
the desired path is y5x3y3x1y1x0. 2
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Theorem 2 (Kőnig) Given a rectangular 0 − 1 matrix M = (aij) where 1 ≤ i ≤ m and
1 ≤ j ≤ n, define a “line” of M to be a row or column of M . Then the minimum number
of lines containing all 1s of M is equal to the maximum number of 1s in M such that no
two lie on the same line.

Proof: Define a bipartite graph G = (V,E) where V = X ∪ Y , X is the set of rows of M ,
Y is the set of columns of M , and (ri, cj) ∈ E if and only if aij = 1 (where ri and cj are
arbitrary elements of X and Y , respectively). This allows us to restate Kőnig’s Theorem
as follows. A vertex cover of G is a set C ⊂ V such that every edge e ∈ E contains some
element of C. Then

min{|C| : vertex covers C} = max{|M | : matchings M}.

Given any vertex cover C and any matching M , we have |M | ≤ |C| since C contains at least
one vertex from each edge of M . Now it suffices to show that, given a minimal vertex cover
C, we want to show that there exists a matching M such that |M | = |C|. Consider the
graph G′ = (V,E′) obtained by removing all the edges within C; E′ = E − (E ∩ (C × C)).
Then G′ is bipartite with parts C and V −C (no edges between C by construction, no edges
between V − C since C is a vertex cover).

We check Hall’s condition for G′. Suppose there exists A ⊂ C such that |Γ(A)| < |A|. The
set (C − A) ∪ Γ(A) constitutes a vertex cover of G (thus contradicting the minimality of
vertex cover C) unless there are edges in A that were removed by constructing G′ from G.
We will consider this case next lecture. 2

Definition 3 A permutation matrix P is a matrix whose entries are

pij =

{
1 if j = σ(i)

0 else

for some σ ∈ Sn.

Theorem 4 (Birkhoff) Let k.n ∈ N and let M = (aij)
n
i,j=1 be an n× n matrix where its

entries aij are nonnegative integers satisfying

n∑
i=1

aij =
n∑

j=1

aij = k.

Then there exist permutation matrices p1, . . . , pk such that M = p1 + . . .+ pk.

Proof: We proceed by induction on k. Consider the graphG = (V,E) with V = {1, . . . , n}∪
{1′, . . . , n′} where i represents the (i, j′) ∈ E if and only if aij ≥ 1. For all subsets A ⊂ [n]
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we have
n∑

j=1

∑
i∈A

aij =
∑
i∈A

n∑
j=1

aij =
∑
i∈A

k = k|A|

and also for some fixed j we have

sj :=
∑
i∈A

aij ≤
n∑

i=1

aij = k

so at least |A| of the sj are greater than 0. Since j ∈ Γ(A) if and only if
∑

i∈A aij > 0, so
|Γ(A)| ≥ |A|. By Hall’s Theorem, G has a perfect matching; therefore, there exists σ ∈ Sn
such that (i, σ(i)′) ∈ E for all i = 1, 2, . . . , n. So the permutation matrix P corresponding
to this permutation σ satisfies pij ≤ aij for all i, j. Now consider the matrix M −P = (bij);

n∑
i=1

bij =

n∑
i=1

aij −
n∑

i=1

pij = k − 1.

By the induction hypothesis, we can write M − P as the sum of permutation matrices;
hence M is the sum of permutation matrices. 2
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