
18.312: Algebraic Combinatorics Lionel Levine

Lecture 17

Lecture date: April 14, 2011 Notes by: Santiago Cuellar

Todays topics:

1. König’s Theorem

2. Kasteleyn’s Theorem: Domino tilings for planar regions (matching planar graphs )

1 Back to König’s Theorem

Theorem 1 (Reformulation of Hall’s marriage theorem) Given sets I1, I2, . . . In ⊆
[n] suppose that:

|Ii1 ∪ Ii2 ∪ · · · ∪ Iik | ≥ k for all 1 ≤ i1 < i2 < · · · < ik ≤ n. (1)

Then {I1, I2, . . . In}, has a transversal (or a system of distinct representatives). That is,
there exists a permutation σ ∈ Sn such that σ(i) ∈ Ii for all i = 1, . . . , n.

Proof: Construct bipartite graph on vertex set V = X ∪ Y where X = {I1, I2, . . . In},
Y = [n] and the edges E = {(Ii, j)| j ∈ Ii}. Then (1) becomes:

Γ({Ii1 , Ii2 , . . . , Iik}) = #(Ii1 ∪ Ii2 ∪ · · · ∪ Iik) ≥ k

Then, by Hall’s marriage theorem, there is a matching which implies a transversal. 2

Slight generalization 1 I1, I2, . . . In ⊆ [m], If (1) holds (note that this implies n ≤ m)
then there is an injective map σ : [n]→ [m] such that σ(i) ∈ Ii for all i = 1, . . . , n.

Recall the König’s theorem restated as a theorem over bipartite graphs:

Theorem 2 (König) Given a bipartite graph G = (V,E):

min
vertex cover C

|C| = max
matchings M

|M | (2)

17-1



Proof:[continued from last lecture]

It is easy to show |C| ≥ |M |, because each edge of the matching, covers at least one vertex
from the cover.

Now we try to prove min |C| ≤ |M | for some matching M . Given a minimal vertex cover
C, we want to extend into a matching MC . Suppose the X and Y are the two components
of the graph then let CX = C ∩X and CY = C ∩ Y .

Example 3

Consider the induced subgraph G′ = (V ′, E′) with vertex set V ′ = CX ∪ (Y − CY ).

Claim 4 Given a subset A ⊆ CX . Then #Γ′(A) ≥ #A

Proof: For the sake of contradiction, assume #Γ′(A) < #A, then (C − A) ∪ Γ′(A) would
be a smaller vertex cover. 2

Likewise, G′′ = (V ′′, E′′), with vertex set V ′′ = CY ∪ (X − CX), has a matching M ′′ using
all the vertices of CX . Then M = M ′ ∪ M ′′ is the matching we were looking. Since
M ′ ∩M ′′ = ∅, then |M | = |M ′|+ |M ′′| = |CX |+ |CY | = C 2

Example 5 Consider a m × n rectangular matrix with entries 1 and 0. We look for a
subset of rows and columns that covers all the 1’s.
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Let r + s is the min number of lines of the matrix containing all the 1’s of M . Without
loss of generality we can assume all the chosen columns are to the left and the rows are at
the top. Consider each chosen row, it has to have a 1 on the right (i.e. not on the chosen
columns). Moreover, for two rows they have a 1 in different columns, otherwise they could
be replaced by a column covering both. Likewise, the columns satisfy a similar property
which gives us a set of r + S 1’s.

2 Kasteleyn’s Theorem: Domino tilings for planar regions

Definition 6 A graph G = (V,E) is called planar if there exists a function α : V → R2

and for all (i, j) ∈ E there is another continuous, injective function γi,j : [0, 1] → R2 such
that γi,j(0) = α(i), γi,j(1) = α(j) and γi,j(0, 1) ∩ γi′,j′(0, 1) = ∅ for different edges.

Intuitively, a graph is planar if you can draw it on the plane with no intersection of edges.

Bipartite planar graphs:

1. Square Grid 2. Hexagonal Lattice 3. General

Question 7 How many ways can you tile an m× n square grid by 2× 1 dominoes?
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We consider the problem on the dual graph:

So the question is equivalent to find the number of perfect matchings in the dual graph.

Let G be a finite induced subgraph of Z2.

Definition 8 The Kasteleyn matrix of G is the V × V matrix:

Ku,v =


1 u, v is an horizontal edge

i =
√
−1 u, v is a vertical edge

0 otherwise

Theorem 9 (Kasteleyn) Given the graph defined above and it’s Kasteleyn matrix:

#{perfect matchings of G} =
√
| detK|

Example 10 (m = 2, n = 3)
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K =



0 0 0 i 1 0
0 0 0 1 i 1
0 0 0 0 1 i
i 1 0 0 0 0
1 i 1 0 0 0
0 1 i 0 0 0


Since we only care about the absolute value of the determinant we can swap columns to get:

K =

[
A 0

0 A

]
where A =

 i 1 0
0 i 1
0 1 i


Then |detK| = | det2A| = |i3 − i− i|2 = 9. So there are 3 matchings which can be checked
by looking at the match for vertex 2, it has three possibilities and the rest of the matches
are uniquely defined afterwards.

Proof:[Kasteleyn’s theorem] G is a bipartite graph with parts X and Y . Let

w(u, v) =


1 if (u, v) is a horizontal edge

i if (u, v) is a vertical edge

0 otherwise.

So

K =

[
0 A

AT 0

]
where Au,v =

{
w(u, v) u, v ∈ E

0 otherwise

By swapping the columns like in the example we get, | detK| = |det2A| = |detA|2. From
this, it is enough to show that |detA| = #{perfect matchings of G}.

We have n = |X| = |Y | and X = {u1, u2, . . . un}, Y = {v1, v2, . . . vn}

det(A) =
∑
σ∈Sn

(−1)σw(1, σ(1)) · . . . w(n, σ(n)) (3)

=
∑
σ∈Sn

(−1)σw(u1, vσ(1)) · . . . w(un, vσ(n)) (4)

Notice that in the last part, the summands are 0 if and only if one of the w are 0. That
is they are not 0 when σ represents a matching, so it’s only left to check that some of the
matchings don’t cancel. In other words

Claim 11 Any two matchings occur with the same sign in the sum (There is no cancelation)
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To do this, we consider two distinct matchings M and M ′

→

Which together can be viewed as cycles (M ∪M ′ is a disjoint union of even cycles.)

Lemma 12 Let v1, v2 . . . v2k be a cycel in Z2. Let

π =
(∏
i odd

w(vi, vi+1)
)
/
( ∏
i even

w(vi, vi+1)
)

then π = (−1)k+l−1, where l is the number of points in Z2 strictly enclosed in the cycle.

Proof:

We prove the lemma by induction over the area enclosed by the cycle.

• The base case is when no area is enclosed.

Notice that only this case is possible for area no area enclosed because the cycle is
the union of two matchings, so every vertex has degree exactly 2. In this case

w(v1, v2)

w(v2, v1)
= 1 = (−1)1+0−1

• Inductive step: Without loss of generality we can assume v1 is the topmost vertex in
the leftmost column. According to this we consider three cases

1. So the new variables are:

k′ = k

l′ = l − 1

V ′ = V + 1

H ′ = H − 1

V = #vertical edges

H = #horizontal edges
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Hence we get, using our inductive hypothesis,

π = π′
−i
i

(5)

= −(−1)k
′+l′−1 (6)

= (−1)k+l−1 (7)

2. The new variables are:

k′ = k − 1

l′ = l

V ′ = V

H ′ = H − 2

Hence we get, using our inductive hypothesis,

π = π′
1

i2
(8)

= −(−1)k
′+l′−1 (9)

= (−1)k+l−1 (10)

3. This last case is analogous to the second case:

This proves the lemma.2

We will use the lemma, to prove the previous claim and finish the proof of the theorem in
the next lecture. 2
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