18.312: Algebraic Combinatorics Lionel Levine

Lecture 18
Lecture date: Apr 14, 2011 Notes by: Taoran Chen

1 Kasteleyn’s theorem

Theorem 1 (Kasteleyn) Let G be a finite induced subgraph of Z*. Define the Kasteleyn
matriz of G to be the V- x V matriz:

1 (u,v) is a horizontal edge
Kyy=1<1i (u,v) is a vertical edge

0 else

then
#{perfect matchings of G} = +/|det K|

Proof:[continued| It suffices to show that any two nonzero terms in the expression

det A = Z W(U1, Vy(1))W(U25 Vg(2)) - W (Un, Vo (n))

oESy

have the same sign. Given two perfect matchings M,M’ of G, they correspond to some
permutations (say,oc and o’ respectively) and some nonzero terms in the expression above.
Their union M U M’ is a disjoint union of even cycles, so we can transform M into M’ by
rotating the edges along each cycle in turn. It suffices to show that rotation along a single
cycle does not affect the sign of the corresponding summand. In particular, we only need
to consider the case when M U M’ is a single cycle.

Let M U M' be the cycle uy,v1,usz,va.....un, vy, where (uq,v1), (uz,v2)...(Un,v,) be-
ing edges of M and (u1,vy,), (u2,v1)...(tun, vp—1) being edges of M'. Then o is the identity
permutation, and ¢’ = (n,n — 1,...,1) is the cyclic permutation having length n, thus
(=1)° =1 and (=1)° = (=1)""!. By a lemma from the last lecture,

w(uy,v a(l))w(UQ’ @) wW(Un, Vo)) w(ur, vi)w(ug, v2)..w(n, Un)
W(U1, Vor(1))W (U2, Vo (2)) W (Uns Vgt () w(vy, ug)w(ve, uz)...w( vy, Up—1)
_ (_l)n-i-l—l

where [ is the number of vertices enclosed by M U M’. Since the interior of M U M’ is a
disjoint union of even cycles, [ is even. As a consequence, ratio of sign for M and sign for
M’ is (—=1)"+=1/(—1)"~! = 1, which completes the proof. O
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2 Domino tilings of a m x n rectangle

As an application of the Kasteleyn’s theorem, we compute the number of tilings by 2 x 1
domino of a m x n rectangle, which is equivalent to find the number of perfect matchings
of the dual graph, G.

Definition 2 Given graphs G1 = (V1, E1) and Gy = (Va, E3),define G1 X Gy to be the graph
having the following properties:

o The vertex set of G1 X Ga is V1 X Vs

o Two vertices (u1,u2) and (vi,v2) of G1 X Gy are connected by an edge if and only if
either (u1,v1) € Eq or (ug,v2) € Es

Definition 3 Let G = (V, E), the adjacency matrix,A, is the V- x V matriz such that

A, = {1 (u,v) € E

)

0 else

We begin our analysis by finding the eigenvalues of the adjacency matrix of the path graph
P,.

pathgraph.png
Fs

Proposition 4 Let A, be the adjacency matriz of the path graph P,. The eigenvalues of

A, are QCOSle forj=1,2,...,n.

n+

Proof: The adjacency matrix A, has the form:

0 1 0 0--- 0
1 0 .
0 1 0 1--- 0

—_
o
]

00- 1 0 1
0 0--- 0 1 0

We know that A is an eigenvalue of A, if and only if there exists a nonzero vector v =
(v1,v2, ..., v,) such that A,v = \v. Writting the condition A,v = Av in coordinates, we
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obtain the system of equations

V2 = A’Ul
v +v3 = Avg
Vo +v4 = Aug

Un—1 = Au,

If we make the convention that vg = 0 = v,,+1, the system of equation becomes the linear
recurrence v;y1 + v;—1 = Av;, 1 <14 < n. Since the linear recurrence can also be written as
(E? — \E + 1)v = 0, its solution has the form v; = aa’ + b3’ (unless a = ), where «,3 are
the solutions of the equation 22 — Az + 1 = 0. In particular, o = 1, a + 3 = A. From the
initial data vg = 0 = vy,41, we deduce o' = "+l This, along with the equation a3 = 1,

gives us
{ a2n+2 —

root of unity. Consequently,

Q= =

hence « is some (2n 4 2)%"

) )
A= — 2Re(a) = 2 = 0.1,..2n+1.
a+p e(a) cos oy J n+
Since 2 cos nLJﬁl = 2cos W(Q%j_j), we need only to consider the possibilities j = 0, 1,2, ...,n+

1. If j = 0, A = 2, the equation 22 — Az + 1 = 0 has root 2 = 1 of multiplicity 2. In this
case the v; has the form ai 4+ b. Solving the initial data vg = 0 = v,41 we find that v; is
constantly 0, which is forbidden. Similarly, we can show that j cannot be n + 1. Therefore,
the remaining possible values of the eigenvalue A are 2 cos nLsz i=12..n Anxn
matrix has exactly n eigenvalues, so we conclude that they are indeed the eigenvalues of

Ap. O

The dual graph, G, of the m x n rectangle can be expressed as G = P, X P,, where P,,,
P, are the path graphs. It’s not hard to check that the Kasteleyn matrix of G, K, can be
written as

K=A,®I,+i(l,®A,)

where the symbol ® denotes tensor product of matrices, and I,, and I,, are the identity
matrices. We are to find the eigenvalues of K.

Proposition 5 Let the eigenvalues of Ap, A, be pp,k = 1,2,...m and N;,j =
1,2,...,n,respectively. Let wy, v; be the associated eigenvectors. Then i + iXj, k =
1,2,...,m,j =1,2,....,n are the eigenvalues of K, with associated eigenvectors wy & v;.
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Proof: We check,

K(wy®vj) = (An®@In+i(ln ® Ay))(w ® v;)
Apwi ® v +iwg ® Ayv;

= (upwr) ® vj + 1wy @ (A\jvj)
p(wg ® vj) + X (wy @ vj)

= (g + X)) (wy ® v;)

a

Finally, by the Kasteleyn’s theorem and the two propositions, we are able to compute the
number of domino tilings:

#{domino tilings} = F#{perfect matchings of G}

= +/|det K|
= (TTIT I+ D"

k=1j=1
LS k g

= || ” 4 cos? 4 cos? 1/4
(k=1j=1( o8 m+ 1 o8 n+1>)

3 Matrix-Tree theorem

We begin with a few definitions.

Definition 6 The Complete graph, K,,, has vertex set V = [n| and E = {(4,j),1 # j}.

Definition 7 A spanning subgraph of a graph G = (V, E) is a graph of the form H =
(V, A) for some A C E.

Definition 8 A graph is connected if for every two vertices u,v € V, G contains a path
from u to v.

Definition 9 A graph is acyclic if there does not exist vg,vi,....,U, = vg Such that
(vi,viy1) € E fori=1,2,....,n. A acyclic graph is also called a forrest.

Definition 10 An acyclic connected graph is called a tree.
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Definition 11 (verification needed) Given a finite graph G with n vertices, a spanning
subgraph T is called o spanning tree of G if any two of the following conditions are met.

e T is connected
o T is acyclic

e T hasn — 1 edges

Moreover, any two of the conditions imply the third.

Definition 12 The complexity of G is x(G) := #{spanning trees of G}.
Theorem 13 (Cayley) x(K,) =n""?2

Proof: This will be a special case of the matrix-tree theorem. O

Definition 14 The Laplacian matrixz of G is L := D — A, where A is the adjacency
matriz and D s given by

dy,
dy, = deg(v;) = #{edges incident to vertex v;}

Example 15 For the complete graph Ky,

0111 3000 3 -1 -1 -1
1 011 0 3 00 -1 3 -1 -1
A= 1101 D= 00 30 L= -1 -1 3 -1
1 110 00 0 3 -1 -1 -1 3

It’s easy to verify that the rows and columns of L sum to 0. In particular, L is a singular
matrix, so 0 is one of its eigenvalue.

Theorem 16 (version 1) Let G = (V, E) be a connected graph such that |V| = n, then
1
xX(G) = ﬁ)\lAQ-')\n—l

where A1, Aa, ..., An—1 are the nonzero eigenvalues of L.

Proof will be provided in the next lecture.
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