
18.312: Algebraic Combinatorics Lionel Levine

Lecture 22
Lecture date: May 3, 2011 Notes by: Lou Odette

This lecture:

• Smith normal form of an integer matrix (linear algebra over Z).

1 Review of Abelian Groups (= Z-modules)

Recall that given a ring R with 1, an R-module is an Abelian group written additively with
a map R×M →M (“scalar multiplication”) with R the scalars andM the vectors, satisfying

r (m1 +m2) = rm1 + rm2

r (sm) = (rs)m

1m = m

which is analogous to a vector space over R, with the difference that we may lack multi-
plicative inverses in R, by contrast with a vector space over a field.

If G is an group, we have a map Z×G→ G

(n, g) 7→ g + · · ·+ g︸ ︷︷ ︸
n times

if n > 0

(0, g) 7→ 0

(n, g) 7→ −

g + · · ·+ g︸ ︷︷ ︸
n times

 if n < 0

so we admit scalar multiplication by integers, but not anything else. In particular, any
abelian group has the structure of a Z-module.

Now, say G is an Abelian group, finitely generated from generators g1, . . . , gn. Then there
is a surjective group homomorphism f : Zn → G taking basis elements to the generators

f (ei) = gi

f

∑
i∈[n]

ciei

 =
∑
i∈[n]

cigi.
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Let K be a kernel of f , the subgroup of Zn s.t.

K = ker f =

∑
i∈[n]

cigi

∣∣∣∣∣∣
∑
i∈[n]

cigi = 0 in G


Definition 1 A group G is torsion-free if

∀g ∈ G, g 6= 0, and ∀n ∈ Z, n 6= 0 we have ng 6= 0

Example 2 Z and Zn are torsion free, but Z/nZ is not torsion free, since ng = 0 for all
g ∈ Z/nZ.

Note that if G is torsion free then it is infinite or zero since with g ∈ G and g 6= 0, then
g, 2g, 3g, . . . are distinct, since otherwise ig = jg ⇒ (i− j) g = 0.

By the Fundamental Theorem of Finitely Generated Abelian Groups (FTFGAG), any
finitely generated abelian group G has the form

G ' Zr × (Z/n1Z)× · · · × (Z/nkZ) (1)

where r ≥ 0 is unique but the n1, · · · , nk > 1 are not necessarily unique.

Example 3 Z6 × Z4 ' Z2 × Z3 × Z4 ' Z2 × Z12, since Zm × Zn = Znm, for m ⊥ n by the
Chinese remainder theorem.

There are two ways to get uniqueness:

1. require that all the ni are prime powers

2. or require n1|n2|n3 · · · |nk.

We consider the second of these today.

Lemma 4 Any subgroup K ⊂ Zn satisfies K ' Zr for some r ≤ n.

Note that unlike subspaces of a vector space, is it possible to have r = n and K 6= Zn. For
example, 2Zn ( Zn while is it still the case that 2Zn ' Zn. In this sense abelian groups are
“more interesting” than vector spaces.
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Now, since K ⊂ Zn ⇒ K ' Zr for some r ≤ n, pick a basis x1, . . . , xr ∈ K so that

K =

∑
i∈[r]

cixi

∣∣∣∣∣∣ ci ∈ Z


and define

L : Zr → Zn; ei 7→ xi

so that
G ' Zn/K = Zn/Image (L) = Zn/LZr

We can think of L as an r × n matrix and each xi =
∑

j∈[n] ai,jei for i ∈ [r], where the ai,j
are the matrix entries of L. We can extend L to Zn, i.e. L : Zn → Zn by setting ei 7→ 0 for
i > r (add zero “columns”).

So far we have seen how defining an abelian group G via generators and relations leads to an
n× n matrix L such that G ' Zn/LZn, where n is the number of generators. The question
that Smith normal form address is: given a group in this form, Zn/LZn, how do we express
it in the factored form (1)?

Example 5 Let

L =

(
2 −1
1 2

)
→ G = 〈g1, g2〉 /

2g1 − g2 = 0
g1 + 2g2 = 0

and

G = Z2/

(
2 1
−1 2

)
Z2
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a = b = 0

a = 1, b = 0

a = 0, b = 1

a = 1, b = 1

0

1 2 3 4 5

-1

-2

1

2

3

Figure 1: This figure illustrates G = Z2/LZ2, where LZ2 consists of the points (2a+ b, 2b− a) for a, b ∈ Z,
as marked by the symbol ◦ on the grid. The remaining symbols represent elements in the respective equiv-
alence classes. The points enclosed by the box represent the members of all equivalence classes, illustrating
that |G| = 5. So G ' Z/5Z.

Now, consider the kinds of changes to L that don’t change the isomorphism type of G. One
approach is to change the generators.

Example 6 Write the group G of example (5) using different generators

G = 〈h1, h2〉 ; h1 = g1, h2 = 3g1 + g2

In general, if H ∈ GLn(Z), where GLn(Z) is the set of n× n matrices U with detU = ±1,
so the inverse also is an integer matrix, then since UZn = Zn

G ' Zn/LZn = UZn/LZn ' Zn/U−1LZn

In addition, if V ∈ GLn (Z), since V Zn = Zn

Zn/U−1LZn = Zn/U−1L (V Zn)

= Zn/
(
U−1LV

)
Zn

Example 7 Write the group G of example (5) with different relations

2g1 − g2 = 0
g1 + 2g2 = 0

→ 2g1 − g2 = 0
3g1 − g2 = 0
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Definition 8 An n×n integer matrix S is in Smith Normal Form (SNF) if S is a diagonal
matrix and uniqueness condition (2) is satisfied with the diagonal elements (S)i,i ≡ di, i.e.

d1|d2|d3 · · · |dn; di ≥ 0, ∀i ∈ [n]

Note that some di may be zero, since any integer divides zero.

Theorem 9 An integer matrix L = (ai,j)i,j∈[n] can be written as

L = USV

where S is in SNF and U, V ∈ GLnZ (invertible over the integers). Moreover, the non-zero
di on the diagonal of S are unique (note, gcd (·) is non-negative by definition):

d1 = gcd (ai,j)

d1d2 = gcd (ai,jak,l − ai,laj,k) (i.e. the 2× 2 determinants)
...

d1 · · · dk = gcd (all k × k minors of L)
...

d1 · · · dn = |detL|

with |G| = |detL|. In terms of the group G, if L has SNF S then

G = Zn/LZn ' Zn/SZn

' 〈g1, · · · , gn〉 / (digi = 0, i ∈ [n])

' 〈g1〉 / (d1g1)× · · · × 〈gn〉 / (dngn)
' Z/ (d1Z)× · · · × Z/ (dnZ)

in particular

• the rank of G is # {i|di = 0}

• if G is finite (all di > 0) then |G| = d1 · · · dn = |detL|

Note: row and column operations don’t change the gcd (·) result since, if n1, . . . , nk 6= 0
(noting that if (m,n) = 1 then ∃c, c′ ∈ Z s.t. cm+ c′n = 1)

gcd (n1, . . . , nk) = min

d > 0| d =
∑
i∈[n]

cini for some c1, · · · , ck ∈ Z


so L = USV .
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Example 10 Consider

L =

 1 3 1
3 1 3
1 3 5

→ Z3/LZ3 ' Z4 × Z8

since

d1 = gcd (ai,j) = 1

d1d2 = gcd (−8, 0, 8, 0, 4, 12, 8, 12,−4) = 4

d1d2d3 = |detL| = 32

2 Commutative Monoids

Definition 11 A monoid M is a set with an associative operation

µ :M ×M →M

and an identity element e ∈M

(e,m) 7→ m, ∀m ∈M

M is commutative if µ (m1,m2) = µ (m2,m1).

We are interested in how to get a group from this object

Example 12 Consider

m = 〈g〉 / (10g = 6g) ; (k + 4)g = kg, ∀g ≥ 6

= {e, g, 2g, . . . , 9g}

and so, writing µ as addition

8g + 8g = 16g = 12g = 8g

Definition 13 An ideal of a monoid M is a subset satisfying

I ⊆M s.t. I +M ⊆ I

i.e. ∀x ∈ I, ∀m ∈M we have m+ x ∈ I.
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Theorem 14 Let M be a finite commutative monoid and let J be the minimal ideal of M

J =
⋂

ideals I

I

Then J is an Abelian group.

In example (12)

I = {8g}+M

= {8g +m|m ∈M}

e.g.
8g + g = 9g
8g + 2g = 6g
8g + 3g = 7g
8g + 4g = 8g

→ I = {6g, 7g, 8g, 9g}

and in the table below, the second last column is the identity, while the last column is cyclic
of order 4, with 9g the generator

6g 7g 8g 9g

6g 8g 9g 6g 7g

7g 9g 6g 7g 8g

8g 6g 7g 8g 9g

9g 7g 8g 9g 6g
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