18.312: Algebraic Combinatorics Lionel Levine Lecture 22 Lecture date: May 3, 2011 Notes by: Lou Odette ## This lecture: • Smith normal form of an integer matrix (linear algebra over \mathbb{Z}). ## 1 Review of Abelian Groups (= \mathbb{Z} -modules) Recall that given a ring R with 1, an R-module is an Abelian group written additively with a map $R \times M \to M$ ("scalar multiplication") with R the scalars and M the vectors, satisfying $$r(m_1 + m_2) = rm_1 + rm_2$$ $$r(sm) = (rs) m$$ $$1m = m$$ which is analogous to a vector space over R, with the difference that we may lack multiplicative inverses in R, by contrast with a vector space over a field. If G is an group, we have a map $\mathbb{Z} \times G \to G$ $$(n,g) \mapsto \underbrace{g + \dots + g}_{n \text{ times}}$$ if $n > 0$ $(0,g) \mapsto 0$ $(n,g) \mapsto -\left(\underbrace{g + \dots + g}_{n \text{ times}}\right)$ if $n < 0$ so we admit scalar multiplication by integers, but not anything else. In particular, any abelian group has the structure of a Z-module. Now, say G is an Abelian group, finitely generated from generators g_1, \ldots, g_n . Then there is a surjective group homomorphism $f: \mathbb{Z}^n \to G$ taking basis elements to the generators $$f(e_i) = g_i$$ $$f\left(\sum_{i \in [n]} c_i e_i\right) = \sum_{i \in [n]} c_i g_i.$$ Let K be a kernel of f, the subgroup of \mathbb{Z}^n s.t. $$K = \ker f = \left\{ \sum_{i \in [n]} c_i g_i \middle| \sum_{i \in [n]} c_i g_i = 0 \text{ in } G \right\}$$ **Definition 1** A group G is torsion-free if $$\forall g \in G, \ g \neq 0, \ and \ \forall n \in \mathbb{Z}, \ n \neq 0 \ we \ have \ ng \neq 0$$ **Example 2** \mathbb{Z} and \mathbb{Z}^n are torsion free, but $\mathbb{Z}/n\mathbb{Z}$ is not torsion free, since ng = 0 for all $g \in \mathbb{Z}/n\mathbb{Z}$. Note that if G is torsion free then it is infinite or zero since with $g \in G$ and $g \neq 0$, then $g, 2g, 3g, \ldots$ are distinct, since otherwise $ig = jg \Rightarrow (i - j)g = 0$. By the Fundamental Theorem of Finitely Generated Abelian Groups (FTFGAG), any finitely generated abelian group G has the form $$G \simeq \mathbb{Z}^r \times (\mathbb{Z}/n_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/n_k\mathbb{Z})$$ (1) where $r \geq 0$ is unique but the $n_1, \dots, n_k > 1$ are not necessarily unique. **Example 3** $\mathbb{Z}_6 \times \mathbb{Z}_4 \simeq \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \simeq \mathbb{Z}_2 \times \mathbb{Z}_{12}$, since $\mathbb{Z}_m \times \mathbb{Z}_n = \mathbb{Z}_{nm}$, for $m \perp n$ by the Chinese remainder theorem. There are two ways to get uniqueness: - 1. require that all the n_i are prime powers - 2. or require $n_1|n_2|n_3\cdots|n_k$. We consider the second of these today. **Lemma 4** Any subgroup $K \subset \mathbb{Z}^n$ satisfies $K \simeq \mathbb{Z}^r$ for some $r \leq n$. Note that unlike subspaces of a vector space, is it possible to have r = n and $K \neq \mathbb{Z}^n$. For example, $2\mathbb{Z}^n \subsetneq \mathbb{Z}^n$ while is it still the case that $2\mathbb{Z}^n \simeq \mathbb{Z}^n$. In this sense abelian groups are "more interesting" than vector spaces. Now, since $K \subset \mathbb{Z}^n \Rightarrow K \simeq \mathbb{Z}^r$ for some $r \leq n$, pick a basis $x_1, \ldots, x_r \in K$ so that $$K = \left\{ \sum_{i \in [r]} c_i x_i \middle| c_i \in \mathbb{Z} \right\}$$ and define $$L: \mathbb{Z}^r \to \mathbb{Z}^n; \ e_i \mapsto x_i$$ so that $$G \simeq \mathbb{Z}^n/K = \mathbb{Z}^n/\mathrm{Image}(L) = \mathbb{Z}^n/L\mathbb{Z}^r$$ We can think of L as an $r \times n$ matrix and each $x_i = \sum_{j \in [n]} a_{i,j} e_i$ for $i \in [r]$, where the $a_{i,j}$ are the matrix entries of L. We can extend L to \mathbb{Z}^n , i.e. $L : \mathbb{Z}^n \to \mathbb{Z}^n$ by setting $e_i \mapsto 0$ for i > r (add zero "columns"). So far we have seen how defining an abelian group G via generators and relations leads to an $n \times n$ matrix L such that $G \simeq \mathbb{Z}^n/L\mathbb{Z}^n$, where n is the number of generators. The question that Smith normal form address is: given a group in this form, $\mathbb{Z}^n/L\mathbb{Z}^n$, how do we express it in the factored form (1)? Example 5 Let $$L = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \rightarrow G = \langle g_1, g_2 \rangle / \begin{cases} 2g_1 - g_2 = 0 \\ g_1 + 2g_2 = 0 \end{cases}$$ and $$G = \mathbb{Z}^2 / \left(\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right) \mathbb{Z}^2$$ Figure 1: This figure illustrates $G = \mathbb{Z}^2/L\mathbb{Z}^2$, where $L\mathbb{Z}^2$ consists of the points (2a+b,2b-a) for $a,b\in\mathbb{Z}$, as marked by the symbol \circ on the grid. The remaining symbols represent elements in the respective equivalence classes. The points enclosed by the box represent the members of all equivalence classes, illustrating that |G| = 5. So $G \simeq \mathbb{Z}/5\mathbb{Z}$. Now, consider the kinds of changes to L that don't change the isomorphism type of G. One approach is to change the generators. **Example 6** Write the group G of example (5) using different generators $$G = \langle h_1, h_2 \rangle$$; $h_1 = g_1, h_2 = 3g_1 + g_2$ In general, if $H \in GL_n(\mathbb{Z})$, where $GL_n(\mathbb{Z})$ is the set of $n \times n$ matrices U with $\det U = \pm 1$, so the inverse also is an integer matrix, then since $U\mathbb{Z}^n = \mathbb{Z}^n$ $$G \simeq \mathbb{Z}^n / L \mathbb{Z}^n = U \mathbb{Z}^n / L \mathbb{Z}^n \simeq \mathbb{Z}^n / U^{-1} L \mathbb{Z}^n$$ In addition, if $V \in GL_n(\mathbb{Z})$, since $V\mathbb{Z}^n = \mathbb{Z}^n$ $$\mathbb{Z}^{n}/U^{-1}L\mathbb{Z}^{n} = \mathbb{Z}^{n}/U^{-1}L(V\mathbb{Z}^{n})$$ $$= \mathbb{Z}^{n}/(U^{-1}LV)\mathbb{Z}^{n}$$ **Example 7** Write the group G of example (5) with different relations $$\begin{array}{ccc} 2g_1 - g_2 = 0 \\ g_1 + 2g_2 = 0 \end{array} \rightarrow \begin{array}{c} 2g_1 - g_2 = 0 \\ 3g_1 - g_2 = 0 \end{array}$$ **Definition 8** An $n \times n$ integer matrix S is in Smith Normal Form (SNF) if S is a diagonal matrix and uniqueness condition (2) is satisfied with the diagonal elements $(S)_{i,i} \equiv d_i$, i.e. $$d_1|d_2|d_3\cdots|d_n;\ d_i\geq 0,\ \forall i\in[n]$$ Note that some d_i may be zero, since any integer divides zero. **Theorem 9** An integer matrix $L = (a_{i,j})_{i,j \in [n]}$ can be written as $$L = USV$$ where S is in SNF and $U, V \in GL_n\mathbb{Z}$ (invertible over the integers). Moreover, the non-zero d_i on the diagonal of S are unique (note, $gcd(\cdot)$ is non-negative by definition): $$d_1 = \gcd(a_{i,j})$$ $$d_1d_2 = \gcd(a_{i,j}a_{k,l} - a_{i,l}a_{j,k}) \qquad (i.e. \ the \ 2 \times 2 \ determinants)$$ $$\vdots$$ $$d_1 \cdots d_k = \gcd(all \ k \times k \ minors \ of \ L)$$ $$\vdots$$ $$d_1 \cdots d_n = |\det L|$$ with $|G| = |\det L|$. In terms of the group G, if L has SNF S then $$G = \mathbb{Z}^{n}/L\mathbb{Z}^{n} \simeq \mathbb{Z}^{n}/S\mathbb{Z}^{n}$$ $$\simeq \langle g_{1}, \cdots, g_{n} \rangle / (d_{i}g_{i} = 0, i \in [n])$$ $$\simeq \langle g_{1} \rangle / (d_{1}g_{1}) \times \cdots \times \langle g_{n} \rangle / (d_{n}g_{n})$$ $$\simeq \mathbb{Z}/(d_{1}\mathbb{Z}) \times \cdots \times \mathbb{Z}/(d_{n}\mathbb{Z})$$ in particular - the rank of G is $\#\{i|d_i=0\}$ - if G is finite (all $d_i > 0$) then $|G| = d_1 \cdots d_n = |\det L|$ Note: row and column operations don't change the $gcd(\cdot)$ result since, if $n_1, \ldots, n_k \neq 0$ (noting that if (m, n) = 1 then $\exists c, c' \in \mathbb{Z}$ s.t. cm + c'n = 1) $$\gcd(n_1,\ldots,n_k) = \min \left\{ d > 0 | d = \sum_{i \in [n]} c_i n_i \text{ for some } c_1,\cdots,c_k \in \mathbb{Z} \right\}$$ so L = USV. Example 10 Consider $$L = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 1 & 3 \\ 1 & 3 & 5 \end{pmatrix} \to \mathbb{Z}^3 / L \mathbb{Z}^3 \simeq \mathbb{Z}_4 \times \mathbb{Z}_8$$ since $$d_1 = \gcd(a_{i,j}) = 1$$ $d_1d_2 = \gcd(-8, 0, 8, 0, 4, 12, 8, 12, -4) = 4$ $d_1d_2d_3 = |\det L| = 32$ ## 2 Commutative Monoids **Definition 11** A monoid M is a set with an associative operation $$\mu: M \times M \to M$$ and an identity element $e \in M$ $$(e,m) \mapsto m, \, \forall m \in M$$ M is commutative if $\mu(m_1, m_2) = \mu(m_2, m_1)$. We are interested in how to get a group from this object Example 12 Consider $$\begin{array}{lcl} m & = & \langle g \rangle \, / \, (10g = 6g) \, ; \, \, (k+4)_g = kg, \, \forall g \geq 6 \\ & = & \{ e, g, 2g, \ldots, 9g \} \end{array}$$ and so, writing μ as addition $$8g + 8g = 16g = 12g = 8g$$ **Definition 13** An ideal of a monoid M is a subset satisfying $$I \subseteq M$$ s.t. $I + M \subseteq I$ i.e. $\forall x \in I, \forall m \in M \text{ we have } m + x \in I.$ **Theorem 14** Let M be a finite commutative monoid and let J be the minimal ideal of M $$J = \bigcap_{ideals\ I} I$$ Then Jis an Abelian group. In example (12) $$I = \{8g\} + M$$ = $\{8g + m | m \in M\}$ e.g. $$\begin{array}{l} 8g+g=9g \\ 8g+2g=6g \\ 8g+3g=7g \end{array} \to I = \{6g,7g,8g,9g\} \\ 8g+4g=8g \end{array}$$ and in the table below, the second last column is the identity, while the last column is cyclic of order 4, with 9g the generator | | 6g | 7g | 8g | 9g | |----|----|----|----|----| | 6g | 8g | 9g | 6g | 7g | | 7g | 9g | 6g | 7g | 8g | | 8g | 6g | 7g | 8g | 9g | | 9g | 7g | 8g | 9g | 6g |