18.312: Algebraic Combinatorics Lionel Levine

Lecture 22
Lecture date: May 3, 2011 Notes by: Lou Odette

This lecture:

e Smith normal form of an integer matrix (linear algebra over Z).

1 Review of Abelian Groups (= Z-modules)

Recall that given a ring R with 1, an R-module is an Abelian group written additively with
amap Rx M — M (“scalar multiplication”) with R the scalars and M the vectors, satisfying

r(mi+me) = rmy+rmy
r(sm) = (rs)m
Im = m

which is analogous to a vector space over R, with the difference that we may lack multi-
plicative inverses in R, by contrast with a vector space over a field.

If G is an group, we have amap Z x G — G

(n,g)—~g+---+g ifn>0
—_—
n times
(0,9) =0
(nyg)——[g+---+g]| ifn<0
—_—

n times

so we admit scalar multiplication by integers, but not anything else. In particular, any
abelian group has the structure of a Z-module.

Now, say G is an Abelian group, finitely generated from generators g1, ..., g,. Then there
is a surjective group homomorphism f : Z" — G taking basis elements to the generators
fle) = g
P\ o] = D e

1€[n] 1€[n]
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Let K be a kernel of f, the subgroup of Z" s.t.

K=kerf= ch-gi Zcigi:OinG

i€[n] i€[n]
Definition 1 A group G is torsion-free if

VYge G, g#0, and¥n € Z, n # 0 we have ng # 0

Example 2 Z and Z" are torsion free, but Z/nZ is not torsion free, since ng = 0 for all
g € Z/nZ.

Note that if G is torsion free then it is infinite or zero since with ¢ € G and g # 0, then
9,29, 3g, ... are distinct, since otherwise ig = jg = (i — j) g = 0.

By the Fundamental Theorem of Finitely Generated Abelian Groups (FTFGAG), any
finitely generated abelian group G has the form

G 7" x (Z/mZ) % - x (Z/ny) (1)

where r > 0 is unique but the ni,--- ,ng > 1 are not necessarily unique.

Example 3 Zg X Zy >~ 7o X Lz X Ly == T X Za, since Ly X Ly = L, for m L n by the
Chinese remainder theorem.

There are two ways to get uniqueness:

1. require that all the n; are prime powers

2. or require nj|na|ns - - - |ng.

We consider the second of these today.
Lemma 4 Any subgroup K C Z™ satisfies K ~ 7" for some r < n.

Note that unlike subspaces of a vector space, is it possible to have r = n and K # Z". For
example, 27" C Z"™ while is it still the case that 2Z" ~ Z™. In this sense abelian groups are
“more interesting” than vector spaces.
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Now, since K C Z"™ = K ~ 7" for some r < n, pick a basis z1,...,x, € K so that

K= Z cixilc; €EZ
i€[r]
and define
L:ZT—>Zn; €, — I
so that
G~7Z"/K =7"/Image (L) = 2" /LZ"
We can think of L as an r X n matrix and each z; = Zje[n] a; je; for i € [r], where the a; ;

are the matrix entries of L. We can extend L to Z", i.e. L:7Z" — Z" by setting e; — 0 for
i > r (add zero “columns”).

So far we have seen how defining an abelian group G via generators and relations leads to an
n X n matrix L such that G ~ Z" /LZ", where n is the number of generators. The question
that Smith normal form address is: given a group in this form, Z"/LZ", how do we express
it in the factored form (1)7

Example 5 Let

2 -1 201 —92=0
< 12 > 1920 g4 2, =0

2 2 1 9
o-z( 4 1)z

and
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Figure 1: This figure illustrates G = Z*/LZ?, where LZ? consists of the points (2a + b, 2b — a) for a,b € Z,
as marked by the symbol o on the grid. The remaining symbols represent elements in the respective equiv-

alence classes. The points enclosed by the box represent the members of all equivalence classes, illustrating
that |G| = 5. So G ~ Z/5Z.

Now, consider the kinds of changes to L that don’t change the isomorphism type of G. One
approach is to change the generators.
Example 6 Write the group G of example (5) using different generators

G = (h1,h2); h1 = g1, ha = 391 + g2

In general, if H € GL,(Z), where GLy(Z) is the set of n x n matrices U with detU = +£1,
so the inverse also is an integer matriz, then since UZ™ = 7

G~ 72"/ LZ" = UZ"/LZ™ ~ 7" /U L7
In addition, if V € GLy, (Z), since VZ™ = Z"
zr)u—tLzt = 7V /UT'L(vzh)
= 7'/ (U 'Lv)z"
Example 7 Write the group G of example (5) with different relations

291 —g2 =0 _ 291 —92=0
g1 +292=0 391 —92=0



Definition 8 An n xn integer matriz S is in Smith Normal Form (SNF) if S is a diagonal
matriz and uniqueness condition (2) is satisfied with the diagonal elements (S), ; = d;, i.e.

d1’d2’d3 oo |dn; d; > 0, Vi € [Tl]

Note that some d; may be zero, since any integer divides zero.

Theorem 9 An integer matriz L = (aivj)ije[n] can be written as
L=USV

where S is in SNF and U,V € GL,Z (invertible over the integers). Moreover, the non-zero
d; on the diagonal of S are unique (note, ged (+) is non-negative by definition):

d1 = ng (ai,j)
didy = ged (asjak; — aiia; k) (i.e. the 2 x 2 determinants)

dy---dp = ged(all kx k minors of L)

dy---dy = |detL]
with |G| = |det L|. In terms of the group G, if L has SNF S then
G=7"/LZ" ~ 7"/SZ"
= <gla T agn> / (dlgl =0,1€ [nb

(91) / (dig1) x -+ x {gn) [ (dngn)
Z) (diZ) % - - x L) (dnZ)

12

12

in particular

e the rank of G is # {i|d; = 0}
e if G is finite (all d; > 0) then |G| =d; - -dy, = |det L]

Note: row and column operations don’t change the ged (-) result since, if ny,...,nE # 0
(noting that if (m,n) =1 then 3¢, €Z s.t. em+dn=1)

ged (ng,...,ng) =min< d > 0d = Zcmi for some cy,--- ,cp €7

i€[n]

so L=USV.
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Example 10 Consider

— Z3JL73 ~ 7y x Tg

~
I
—_ o =
W = W
S IJURNS

since

d1 = ng (ai,j) =1
d1d2 = ng (_87078a0a4a 12787 127_4) =4
d1d2d3 = |det L‘ =32

2 Commutative Monoids

Definition 11 A monoid M is a set with an associative operation
w:MxM—M
and an identity element e € M
(e,m) —m,Vm e M

M is commutative if pn(my, ma) = p(me, my).
We are interested in how to get a group from this object

Example 12 Consider

m = (g)/(10g =6g); (k+4),=kg, Vg =6
= {e,9,29,...,99}

and so, writing i as addition

8g + 8g = 16g = 129 = 8¢

Definition 13 An ideal of a monoid M is a subset satisfying
ICMst. I+MCI

r.e. Ve € I, Vm € M we havem+x € I.
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Theorem 14 Let M be a finite commutative monoid and let J be the minimal ideal of M
J= ()1
ideals 1

Then Jis an Abelian group.

In example (12)

I = {8g}+M
= {8g+m|me M}

e.g.
89+ g =19g
8g + 2g = 6g

— I ={69,79,89,9

89+ 39 = Tg {69.79,89,99}
89+ 4g = 8¢

and in the table below, the second last column is the identity, while the last column is cyclic
of order 4, with 9¢g the generator

| 69 [ 79 [ 89| 99|
6g || 89 |99 | 69 | 79
79 |99 | 69 | Tg | 8¢
8g || 69 | 79 | 89 | Yy
99 || 79 | 89 | 9g | 6g
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