18.312:	Algebraic	Com	bina	torics
---------	-----------	-----	------	--------

Lionel Levine

Lecture 23

Lecture date: May 10, 2011

Notes by: David Thomas

1 Abelian Sandpile Model

Definition 1 (sink, sandpile, chips) Let G = (V,E) be a finite connected undirected graph with a <u>sink</u> vertex z. Then a <u>sandpile</u> is a map $\sigma: V \to \mathbb{Z}_{\geq 0}$ such that $\sigma(v) = number$ of chips at vertex v.

Definition 2 (stable/unstable) A vertex v, which is not a sink, is <u>unstable</u> if $\sigma(v) \ge d(v)$ where d(v) is the degree of v. Otherwise is is <u>stable</u>.

Definition 3 (topple) If v is unstable, it can <u>topple</u>, giving rise to a new sandpile $\sigma'(w) = \sigma(v) - d(v)$ for w = v, $\sigma(w) + 1$, when w and v are neighbors, and $\sigma(w)$ otherwise.

The inspiration behind these names comes from the following example. Consider grains of sand being droped onto a sandpile. As the sand in the pile increases there is a trickling down effect which corresponds to toppling. See the image below.

Now consider the following example where $G = C_5$.

Notice that toppling vertics in a different order leads to the same final result. We will prove a theorem about this after developing a few more definitions.

If $v \in V$, let $\Delta_v(w) = -d(v)$, w = v, 1 if w is neighbor of v, and 0 otherwise. Then toppling vertex v corresponds to setting $\sigma' = \sigma + A_v$.

Definition 4 (legal sequence) A sequence $x_1, \ldots, x_k \in V$ is a <u>legal</u> toppling sequence for if $\sigma_i(x_i) \geq d(x_i)$ for all $i = 1, \ldots, k$ where $\sigma_1 = \sigma$ and $\sigma_{i+1} = \sigma_i + \overline{\Delta}_{x_i}$ for $i = 1, \ldots, k-1$.

Definition 5 (stabilizing) A sequence y_1, \ldots, y_l is <u>stabilizing</u> for σ if $(\sigma + \Delta_{y_1} + \cdots + \Delta_{y_l})w \leq d(w) - 1$ for all $w \in V - \{z\}$, where z is the <u>sink</u>.

In the pentagon example above, we see that (1,2,1,5),(1,5,1,2),(1,5,2,1), and (1,2,5,1) are all legal and stabilizing for $\sigma = 3 - 1 - 0 - 0 - 1$. Notice that the legal and stabilizing sequences are all permutations of each other. This inspires the following theorem.

Theorem 6 (Abelian Property) If x_1, \ldots, x_k and y_1, \ldots, y_l are both legal and stabilizing for σ , then k = l, and there exists $\pi \in S_k$ such that $x_i = y_{\pi_i}$ for all $i = 1, \ldots, k$

We will get more millage out of the next lemma which implies the abelian property.

Lemma 7 If x_1, \ldots, x_k is legal for σ and y_1, \ldots, y_l is stabilizing for σ , then $k \leq l$ and there exists $\pi \in S_l$ such that $x_i = y_{\pi_i}$ for all $i = 1, \ldots, k$.

Proof: Induct on k. \bar{x} legal implies $\sigma(x_1) \geq d(x_1)$. Notice that toppling any vertex $v \neq x$ does not decrease $\sigma(x_1)$. \bar{y} stabilizing implies that there exists j such that $y_j = x_1$. Set $\pi(i) = j$. The sequence $y_j, y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_l$ is stabilizing for σ which implies $y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_l$ is stabilizing for $\sigma_2 = \sigma_1 + \Delta_{x_1}$. Also x_2, \ldots, x_k is legal for σ_2 . By inductive hypothesis, x_2, \ldots, x_k is a permutation of a subsequence of $y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_l$. \square

Definition 8 (sandpile monoid) The <u>sandpile monoid</u> of (G, z) is $M(G, z) = \{stable \ sandpiles \ \sigma : V_o \to Z_{\geq 0}\}$, where $V_o = V - \{z\}$, with operation $(\sigma_1, \sigma_2) \to (\sigma_1 + \sigma_2)^o$

Definition 9 (stabilization) The stabilization σ^o of σ is $\sigma^o = \sigma + \Delta_{x_1} + \cdots + \Delta_{x_k}$ where x_1, \ldots, x_k is a legal stabilizing sequence for σ .

See the example below.

Now M is a monoid because it is associative: $((\sigma_1 + \sigma_2)^o + \sigma_3)^o = (\sigma_1 + \sigma_2 + \sigma_3)^o = (\sigma_1 + (\sigma_2 + \sigma_3)^o)^o$ and has an identity: $(\sigma + 0)^o = \sigma$.

Theorem 10 Let M be a finite commutative monoid. Then $J = \bigcap_{I \subset M, \ I \ ideal} I$ is an abelian group.

Proof: Given $x \in J$, claim x + J = J, ie. $J \to J$ and $y \to x + y$ is a permutation of J. First note that J itself is an ideal: $J + M = \bigcap_{I \subset M} (I + M) \subseteq \bigcap_{I = J}$. Now will show x + J is an ideal. (x + J) + M = x + (J + M)x + J and since J is minimal ideal $J \subset x + J$. Hence x + J = J. Now will show the existence of an identity element. Let $\pi_x : J \to J$ be a permutation with $\pi_x(y) = x + y$. The exists $n \ge 1$ such that $\pi_x^n(y) = y$. Then nx + y = y for all $y \in J$ and we can let $y \in J$ and $y \in J$ and y

Definition 11 (sandpile group) The <u>sandpile group</u> of (G, z) is $K(G, z) = \bigcap_{I \subset M(G,z), I \ ideal} I$.

For the last ten minutes of lecture Professor Levine showed some examples of sandpiles and talked about research in the field.

