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Sandpile groups and Laplacian matrices

Let G = (V,E) be a connected undirected graph. Enumerate the vertices as V =
{v1,...,vn}, and set s = v,. Recall that a sandpile on G is a map ¢ : V. — Z>( or
equivalently an element of Z%,. The sandpile monoid on G is the commutative monoid

M(G,s) = {0 :0(v;) <deg(v;),1 <i<n—1} with composition o +pqs) ¥ = (0 +9)°.
The sandpile group on G is the abelian group

k(G,s) = ﬂ I.

I ideal of M(G,s)

This definition is slightly unworkable. We would like to find generators and relations for
k(G, s) because abelian groups are usually understood in these terms.

Definition 1 Let o and ¢ be sandpiles. If there exists a sandpile ¢ such that ¢(v;) > 0 for
1<i<n-—1ando = (p+1)°, then o is reachable from . A sandpile o0 € M(G,s) is
recurrent if o is reachable from any ¢ € M (G, s).

Let R C M(G,s) be the set of recurrent sandpiles. Consider the sandpile §° € M(G, s)
such that d(v;) = deg(v;) for 1 < i < n — 1. Since 6(v;) — ¥ (v;) > 0 for any p € M(G, s),
this implies that §° is reachable. Hence R # 0.

Lemma 2 o € (G, s) if and only if o is recurrent.

Proof: (R C k(G,s)). Let I C M(G,s) be a nonempty ideal. Fix ¢p € I. Given o € R,
there exists a sandpile ¢ such that o = (¢ + 1)° by defintion. Since I is an ideal, this
implies that o € I. Hence R C I. We conclude that R C (] jqeal of a(c5) L = K(G, 8)-

(k(G,s) C R). Recall that R # 0. Since x(G,s) is the minimal ideal of M(G,s), it is
enough to show that R is an ideal. Consider 0 € R and 7 € M (G, s). We want to show
that (o +7)° is recurrent. Let ¢ € M (G, s) and choose a sandpile ¢ such that o = (14 ¢)°.
Set ¢’ = ¢ + 7. By the abelian property of sandpile stabilization, we have

W+¢) =@W+e+7)°=(+9)°+7)°=(+71)".
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Hence (o + 7)° is recurrent. O

Recall that the Laplacian matrix of GG is the matrix L = D — A where
D = diag(deg(v1), . ..,deg(v,)) and A = (a;5)7;_; for

0 if (’UZ',’U]') ¢ E
Qz7 — .
! 1 if (v,v5) € B

Let L be the matrix L with the n'® row and nt" column removed, and let A; for 1 < i < n—1
be the i*? row of L.

Note that if o is obtained from 1 through topplings, then o = ¢)—3 ;" | A;, for some collec-
tion of vertices {v;, : 1 <k <m} C V. This is an immediate consequence of the definition
of toppling. Hence o ~ 1 in Z"~!/Z" 'L, and in particular o ~ ¢° in Z"~'/Z"1L,. We
will give an isomorphism between Z"~!/Z" 'L and k(G, s) by showing that each equiva-
lence class in Z"~!/Z" 1L, contains a unique recurrent sandpile and using our description
of k(G, s) from Lemma 2.

Lemma 3 Every equivalence class in Z"~'/Z" Ly contains at least one recurrent sandpile.
Proof: Consider ¢ € Z"!. Let m = min{0,min{o(v;):1<i<n—1}} and d =
max {deg(v;) : 1 <1i <n}. Recall the definition of 4. Set

=0+ [d—m](d—0°).

Since 0°(v;) < deg(v;) for 1 <1i <mn — 1, this implies that 6 — §° is a positive vector. Hence
d —m > —m implies that 1) is a nonnegative vector. Since § —0° ~ 0 in Z"~1/Z" 1 L,, this
means that 1 ~ o in Z"~1/Z" 1 L,. We claim that ¢° € M (G, s) is recurrent. Note that

P(vi) > [d = m](6(vi) = 6°(vi)) = d(6(vi) — 6°(vi)) = d

for 1 <i<mn-—1. Given 7€ M(G,s), ¥(v;) > deg(v;) for 1 <i <n — 1 implies that ) — 7
is a nonnegative vector. Hence ¢° = (7 + (¢ — 7))°. We conclude that ¢° is a recurrent
sandpile equivalent to ¢ in Z"~1/Z"'L,. O

Fact 4 Set e = (25) — (20)°. If o is recurrent, then (o +¢€)° = 0.

Proof: By definition there exists a sandpile 7 such that o = (74 0)°. Consider the sandpile
Y= (T+06)+e=(20)+7+—(20)°.
Since € is a positive vector, the abelian property of sandpile stabilization implies that

P =({(14+9)°+€)° =(c+¢€)°.
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Again since § — (24)° is a nonnegative vector, the abelian property of sandpile stabilization
implies that
P =((20)°+7+5—(20)°)° =(14+6)° =o0.

This gives the result. O

Lemma 5 Every equivalence class in Z" ' /Z" 'L, contains at most one recurrent sand-
pile.

Proof: Suppose that o and o’ are recurrent and equivalent in Z"~!/Z" 'L . This implies

that
o' =0+ Z i, + Z GVAVS
kel kel

where ¢ > 0 for k € I, and ¢ < 0 for k € I_. Let

=0 + Z —cp;, =0+ Z WAV

kel kel

Recall the definition of €. Since € is a positive vector, there exist N > 0 such that

T(vk) > |cg| deg(v;) for 7 = 1 + Ne. Topple each vertex vy for k € I_ in 7 a total of —c
times to obtain o’ + ke. By Fact 4, o’ + ke stabilizes to o’. Topple each vertex vy, for k € I,
in 7 a total of ¢; times to obtain o + ke. By Fact 4, o 4 ke stabilizes to . Therefore by
the abelian property of sandpile stabilization, we conclude that o = ¢’. O

Assume that Ls has Smith normal form UL,V = diag(by,...,b,—1) where U,V € GL,,_1(Z).
Theorem 6 k(G,s) =2 Z" Y /Z" L, 2 Z/0WZ x --- x Z/b,17Z.

Proof: By Lemma 2, Lemma 3 and Lemma 5 imply that the map taking a recurrent
sandpile to its equivalence class in Z"~!/Z"~!L, is bijective. Since (o + 7) ~ (¢ + 7)° for
o,T € Z%) this map is a group homomorphism. This gives the first isomorphism.

Writing vectors as columns rather than rows, Z"~!/Z" 'L, becomes Z"~!/L1Z"~!. The
second isomorphism follows from Example 6 of Lecture 22 noting that
diag(bl, . ,bn_l) = diag(bl, ce ,bn_l)t = VtLgUt. O

Theorem 6 gives the sought after description of x(G, s) in terms of generators and relations.
Recall that x(G) is the number of spanning trees in G.

Corollary 7 |k(G,s)| =b1---bp—1 = k(G)
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Proof: By Theorem 6, we have that
|I€(G,S)| = ‘Z/blz X X Z/bn,12| = bl s bn,1 = det(LS).

Note that we have used the fact that det(U) = det(V) = 1. From the Matrix Tree
Theorem, we know that det(Ls) is the number of spanning trees rooted at s in the bidirected
graph corresponding to G, or equivalently the number of spanning trees in G. This gives
the result. O

The definition of (G, s) makes the dependence on s unclear. However using Theorem 6 we
see that the choice of the sink is irrelevant.

Corollary 8 For any s' € V, k(G, s) = k(G, s).

Proof: By Theorem 6, we know that x(G,s’) = Z"7!/Z"'L,. We claim that
71 )71 Ly is isomorphic to Z"/Z"L for each s’ € V. Reordering if necessary, assume
without loss of generality that s’ = s. Note that Z"~! is isomorphic to the subgroup of
vectors in Z™ whose coordinates sum to zero. Since the rows of L sum to zero, this isomor-
phism is compatible with quotienting Z" by Z" L. In other words, modding out a vector in
7" 1 by the Z-span of the rows of L corresponds to modding out the related vector in Z"
by the Z-span of the rows of L. Since the rows of L sum to zero, the Z-span of rows 1 to n
of L is the same as the Z-span of rows 1 to n — 1 of L. We conclude that Z"~!/Z" 1L, is
isomorphic to Z"/Z"L. O

Action of sandpile groups on spanning trees

We want to extend Corollary 7 by producing a bijection between (G, s) and the spanning
trees of G. Let G’ be the bidirected graph corresponding to G with the edges coming out
from s removed. Let T denote the set of oriented spanning trees rooted at s in G’. Recall
that T is in bijection with the set of spanning trees in G. The set T does not have an
obvious group structure. Even the composition of spanning trees is unclear. So assigning
T a group structure and producing an isomorphism is not a reasonable plan.

A better idea is to find a free and transitive action of (G, s) on T'. Recall that the action
of a group on a set is free if only the identity element has a fixed point, and transitive
if there exists a single orbit. Hence for any ¢,¢' € T there would exist a unique element
o € k(G, s) such that ot = ¢'. Such an action can be given in terms of rotor-routing, which
was described in Lecture 20.

Fix an ordering FE; on the edges incident to v; for 1 < i < n — 1. A rotor configuration
on (G,s) isamap p:V —{s} — E such that p(v;) € E; for 1 < i < n — 1. Consider a
sandpile o and a rotor configuration p. A non-sink vertex of G is active if it has at least
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one chip. It v; is active then firing v; results in a new sandpile and rotor configuration
given by replacing the rotor p(v;) with p(v;)™ and moving one chip from v; to the head of
p(v;)T (and removing the chip if p(v;)" is a sink).

Let 0 € (G, s) and t € T. The action of o on t can be described by the following process.
The edges of t determine a rotor configuration. Place o(v;) chips at v; for 1 <i <n — 1.
Fire the vertices of G until no vertex is active. The resulting rotor configuration determines
an element ¢ € T. The image of ¢ under o is ¢’. Showing that this process determines a
well defined action, and that this action is free and transitive takes some developing. We
refer the interested reader to Section 3 of Holroyd et al..

Example: Let G and G’ be the graphs indicated in Figure 1. Throughout the example
we will consider sandpiles on G’ which are conceptually identical to sandpiles on G. There

& 0

Figure 1: Graphs G and G’

exist four spanning trees in G’ rooted at s. These are shown in Figure 2.
l—)l ® ® ® ® ®

Figure 2: Spanning trees in G’ rooted at s

Since vertices vy, v and vs have outdegree 2, M(G',s) consists of the 8 vectors (z,v, 2)
for z,y,z € {0,1}. To determine which of these sandpiles are recurrent we can use the
following lemma whose proof can be found in Section 4 of Holroyd et al.

Lemma 9 (Burning Algorithm) Let 3 be the sandpile on G’ such that
B(v;) = outdeg(v;) — indeg(v;) > 0.

A sandpile o is recurrent if and only if (o + 3)° = 0.
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Using Lemma 9, we ﬁnd that there exist 4 recurrent sandpiles. These are indicated in Figure
3. Moreover k( G’ & 7./A7 where the isomorphism is given in Figure 3. Let o be the

O,

® . . .

Figure 3: Recurrent sandpiles on G’

sandpile (1, 1,0), and let ¢ be the spanning tree indicated in Figure 4. Using the procedure
outlined above, we find that the action of o on ¢ is given by the sequence of spanning trees
in Figure 4. Note that ot = ' is indeed a spanning tree in G’.

Figure 4: Action of o on t

Complete graphs and parking sequences

The sandpile group of K, the complete graph on n vertices, is already of interest. Recall
that the Laplacian matrix of K, is nl, — J where I,, is the n x n identity and J is the
n X n matrix whose entries are all 1. Fix a sink s and let Lg be the corresponding reduced
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Laplacian matrix. Recall that the (k, k) entry of the Smith normal form of L is the ged of
the k£ x k minors of Ls. For instance by = 1, and by is the ged of

n—1 —1
-1 n-1

n—1 -1 -1 -1
-1 -1 -1 -1

which is n. It can be shown that the ged of the k£ x k& minors for k£ > 2 is n. By Theorem 6
this implies the following result.

-2
Theorem 10 x(K,,s) = (Z/nZ)n .

n—2

Note that by Corollary 7, we have Cayley’s formula x(K,) = n"“. From this result we
can obtain a description of the recurrent sandpiles on K,,. A sandpile o is recurrent if and
only if at least k vertices contain at least n — k chips for 1 < k < n. This puts recurrent
sandpiles on K, in bijective correspondence with solutions to the following problem.

Consider n parking spaces labeled 1 to n along a one way street. See Figure 5. There exist
n cars that want to park in these spaces. Each driver has a prefered spot. The drivers
will take turns selecting a spot, and will take the next available spot if they find that their
prefered spot has already been taken. The preferences of the drivers can be expressed as
a sequence s; € [n] for 1 < i < n. A parking sequence is a sequence {s;} of preferences
such that every driver finds a spot. Note that at most one driver can want spot n, at most
two drivers can want spot n — 1 and so on, establishing the bijection.

—
|

[ N J n

Figure 5: Setup in parking problem
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