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Sandpile groups and Laplacian matrices

Let G = (V,E) be a connected undirected graph. Enumerate the vertices as V =
{v1, . . . , vn}, and set s = vn. Recall that a sandpile on G is a map σ : V → Z≥0 or
equivalently an element of Zn

≥0. The sandpile monoid on G is the commutative monoid
M(G, s) = {σ : σ(vi) < deg(vi), 1 ≤ i ≤ n− 1} with composition σ +M(G,s) ψ = (σ + ψ)◦.
The sandpile group on G is the abelian group

κ(G, s) =
⋂

I ideal of M(G,s)

I.

This definition is slightly unworkable. We would like to find generators and relations for
κ(G, s) because abelian groups are usually understood in these terms.

Definition 1 Let σ and ψ be sandpiles. If there exists a sandpile ϕ such that ϕ(vi) ≥ 0 for
1 ≤ i ≤ n − 1 and σ = (ϕ + ψ)◦, then σ is reachable from ψ. A sandpile σ ∈ M(G, s) is
recurrent if σ is reachable from any ψ ∈M(G, s).

Let R ⊂ M(G, s) be the set of recurrent sandpiles. Consider the sandpile δ◦ ∈ M(G, s)
such that δ(vi) = deg(vi) for 1 ≤ i ≤ n − 1. Since δ(vi) − ψ(vi) > 0 for any ψ ∈ M(G, s),
this implies that δ◦ is reachable. Hence R 6= ∅.

Lemma 2 σ ∈ κ(G, s) if and only if σ is recurrent.

Proof: (R ⊂ κ(G, s)). Let I ⊂ M(G, s) be a nonempty ideal. Fix ψ ∈ I. Given σ ∈ R,
there exists a sandpile ϕ such that σ = (ϕ + ψ)◦ by defintion. Since I is an ideal, this
implies that σ ∈ I. Hence R ⊂ I. We conclude that R ⊂

⋂
I ideal of M(G,s) I = κ(G, s).

(κ(G, s) ⊂ R). Recall that R 6= ∅. Since κ(G, s) is the minimal ideal of M(G, s), it is
enough to show that R is an ideal. Consider σ ∈ R and τ ∈ M(G, s). We want to show
that (σ+τ)◦ is recurrent. Let ψ ∈M(G, s) and choose a sandpile ϕ such that σ = (ψ+ϕ)◦.
Set ϕ′ = ϕ+ τ . By the abelian property of sandpile stabilization, we have

(ψ + ϕ′)◦ = (ψ + ϕ+ τ)◦ = ((ψ + ϕ)◦ + τ)◦ = (σ + τ)◦.
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Hence (σ + τ)◦ is recurrent. 2

Recall that the Laplacian matrix of G is the matrix L = D −A where
D = diag(deg(v1), . . . ,deg(vn)) and A = (aij)n

i,j=1 for

aij =

{
0 if (vi, vj) /∈ E
1 if (vi, vj) ∈ E

.

Let Ls be the matrix L with the nth row and nth column removed, and let ∆i for 1 ≤ i ≤ n−1
be the ith row of Ls.

Note that if σ is obtained from ψ through topplings, then σ = ψ−
∑m

k=1 ∆ik for some collec-
tion of vertices {vik : 1 ≤ k ≤ m} ⊂ V . This is an immediate consequence of the definition
of toppling. Hence σ ∼ ψ in Zn−1/Zn−1Ls, and in particular σ ∼ σ◦ in Zn−1/Zn−1Ls. We
will give an isomorphism between Zn−1/Zn−1Ls and κ(G, s) by showing that each equiva-
lence class in Zn−1/Zn−1Ls contains a unique recurrent sandpile and using our description
of κ(G, s) from Lemma 2.

Lemma 3 Every equivalence class in Zn−1/Zn−1Ls contains at least one recurrent sandpile.

Proof: Consider σ ∈ Zn−1. Let m = min {0,min {σ(vi) : 1 ≤ i ≤ n− 1}} and d =
max {deg(vi) : 1 ≤ i ≤ n}. Recall the definition of δ. Set

ψ = σ + [d−m](δ − δ◦).

Since δ◦(vi) < deg(vi) for 1 ≤ i ≤ n− 1, this implies that δ− δ◦ is a positive vector. Hence
d−m ≥ −m implies that ψ is a nonnegative vector. Since δ− δ◦ ∼ 0 in Zn−1/Zn−1Ls, this
means that ψ ∼ σ in Zn−1/Zn−1Ls. We claim that ψ◦ ∈M(G, s) is recurrent. Note that

ψ(vi) ≥ [d−m](δ(vi)− δ◦(vi)) ≥ d(δ(vi)− δ◦(vi)) ≥ d

for 1 ≤ i ≤ n− 1. Given τ ∈M(G, s), ψ(vi) ≥ deg(vi) for 1 ≤ i ≤ n− 1 implies that ψ − τ
is a nonnegative vector. Hence ψ◦ = (τ + (ψ − τ))◦. We conclude that ψ◦ is a recurrent
sandpile equivalent to σ in Zn−1/Zn−1Ls. 2

Fact 4 Set ε = (2δ)− (2δ)◦. If σ is recurrent, then (σ + ε)◦ = σ.

Proof: By definition there exists a sandpile τ such that σ = (τ+δ)◦. Consider the sandpile

ψ = (τ + δ) + ε = (2δ) + τ + δ − (2δ)◦.

Since ε is a positive vector, the abelian property of sandpile stabilization implies that

ψ◦ = ((τ + δ)◦ + ε)◦ = (σ + ε)◦.
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Again since δ− (2δ)◦ is a nonnegative vector, the abelian property of sandpile stabilization
implies that

ψ◦ = ((2δ)◦ + τ + δ − (2δ)◦)◦ = (τ + δ)◦ = σ.

This gives the result. 2

Lemma 5 Every equivalence class in Zn−1/Zn−1Ls contains at most one recurrent sand-
pile.

Proof: Suppose that σ and σ′ are recurrent and equivalent in Zn−1/Zn−1Ls. This implies
that

σ′ = σ +
∑
k∈I+

ck∆ik +
∑
k∈I−

ck∆ik

where ck > 0 for k ∈ I+ and ck < 0 for k ∈ I−. Let

ψ = σ′ +
∑
k∈I−

−ck∆ik = σ +
∑
k∈I+

ck∆ik .

Recall the definition of ε. Since ε is a positive vector, there exist N � 0 such that
τ(vk) ≥ |ck|deg(vi) for τ = ψ + Nε. Topple each vertex vk for k ∈ I− in τ a total of −ck
times to obtain σ′+kε. By Fact 4, σ′+kε stabilizes to σ′. Topple each vertex vk for k ∈ I+
in τ a total of ck times to obtain σ + kε. By Fact 4, σ + kε stabilizes to σ. Therefore by
the abelian property of sandpile stabilization, we conclude that σ = σ′. 2

Assume that Ls has Smith normal form ULsV = diag(b1, . . . , bn−1) where U, V ∈ GLn−1(Z).

Theorem 6 κ(G, s) ∼= Zn−1/Zn−1Ls
∼= Z/b1Z× · · · × Z/bn−1Z.

Proof: By Lemma 2, Lemma 3 and Lemma 5 imply that the map taking a recurrent
sandpile to its equivalence class in Zn−1/Zn−1Ls is bijective. Since (σ + τ) ∼ (σ + τ)◦ for
σ, τ ∈ Zn

≥0 this map is a group homomorphism. This gives the first isomorphism.

Writing vectors as columns rather than rows, Zn−1/Zn−1Ls becomes Zn−1/Lt
sZn−1. The

second isomorphism follows from Example 6 of Lecture 22 noting that
diag(b1, . . . , bn−1) = diag(b1, . . . , bn−1)t = V tLt

sU
t. 2

Theorem 6 gives the sought after description of κ(G, s) in terms of generators and relations.
Recall that κ(G) is the number of spanning trees in G.

Corollary 7 |κ(G, s)| = b1 · · · bn−1 = κ(G)
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Proof: By Theorem 6, we have that

|κ(G, s)| = |Z/b1Z× · · · × Z/bn−1Z| = b1 · · · bn−1 = det(Ls).

Note that we have used the fact that det(U) = det(V ) = ±1. From the Matrix Tree
Theorem, we know that det(Ls) is the number of spanning trees rooted at s in the bidirected
graph corresponding to G, or equivalently the number of spanning trees in G. This gives
the result. 2

The definition of κ(G, s) makes the dependence on s unclear. However using Theorem 6 we
see that the choice of the sink is irrelevant.

Corollary 8 For any s′ ∈ V , κ(G, s) ∼= κ(G, s′).

Proof: By Theorem 6, we know that κ(G, s′) ∼= Zn−1/Zn−1Ls′ . We claim that
Zn−1/Zn−1Ls′ is isomorphic to Zn/ZnL for each s′ ∈ V . Reordering if necessary, assume
without loss of generality that s′ = s. Note that Zn−1 is isomorphic to the subgroup of
vectors in Zn whose coordinates sum to zero. Since the rows of L sum to zero, this isomor-
phism is compatible with quotienting Zn by ZnL. In other words, modding out a vector in
Zn−1 by the Z-span of the rows of Ls corresponds to modding out the related vector in Zn

by the Z-span of the rows of L. Since the rows of L sum to zero, the Z-span of rows 1 to n
of L is the same as the Z-span of rows 1 to n− 1 of L. We conclude that Zn−1/Zn−1Ls is
isomorphic to Zn/ZnL. 2

Action of sandpile groups on spanning trees

We want to extend Corollary 7 by producing a bijection between κ(G, s) and the spanning
trees of G. Let G′ be the bidirected graph corresponding to G with the edges coming out
from s removed. Let T denote the set of oriented spanning trees rooted at s in G′. Recall
that T is in bijection with the set of spanning trees in G. The set T does not have an
obvious group structure. Even the composition of spanning trees is unclear. So assigning
T a group structure and producing an isomorphism is not a reasonable plan.

A better idea is to find a free and transitive action of κ(G, s) on T . Recall that the action
of a group on a set is free if only the identity element has a fixed point, and transitive
if there exists a single orbit. Hence for any t, t′ ∈ T there would exist a unique element
σ ∈ κ(G, s) such that σt = t′. Such an action can be given in terms of rotor-routing, which
was described in Lecture 20.

Fix an ordering Ei on the edges incident to vi for 1 ≤ i ≤ n − 1. A rotor configuration
on (G, s) is a map ρ : V − {s} → E such that ρ(vi) ∈ Ei for 1 ≤ i ≤ n − 1. Consider a
sandpile σ and a rotor configuration ρ. A non-sink vertex of G is active if it has at least
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one chip. It vi is active then firing vi results in a new sandpile and rotor configuration
given by replacing the rotor ρ(vi) with ρ(vi)+ and moving one chip from vi to the head of
ρ(vi)+ (and removing the chip if ρ(vi)+ is a sink).

Let σ ∈ κ(G, s) and t ∈ T . The action of σ on t can be described by the following process.
The edges of t determine a rotor configuration. Place σ(vi) chips at vi for 1 ≤ i ≤ n − 1.
Fire the vertices of G until no vertex is active. The resulting rotor configuration determines
an element t′ ∈ T . The image of t under σ is t′. Showing that this process determines a
well defined action, and that this action is free and transitive takes some developing. We
refer the interested reader to Section 3 of Holroyd et al..

Example: Let G and G′ be the graphs indicated in Figure 1. Throughout the example
we will consider sandpiles on G′ which are conceptually identical to sandpiles on G. There

Figure 1: Graphs G and G′

exist four spanning trees in G′ rooted at s. These are shown in Figure 2.

Figure 2: Spanning trees in G′ rooted at s

Since vertices v1, v2 and v3 have outdegree 2, M(G′, s) consists of the 8 vectors (x, y, z)
for x, y, z ∈ {0, 1}. To determine which of these sandpiles are recurrent we can use the
following lemma whose proof can be found in Section 4 of Holroyd et al.

Lemma 9 (Burning Algorithm) Let β be the sandpile on G′ such that

β(vi) = outdeg(vi)− indeg(vi) ≥ 0.

A sandpile σ is recurrent if and only if (σ + β)◦ = σ.
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Using Lemma 9, we find that there exist 4 recurrent sandpiles. These are indicated in Figure
3. Moreover κ(G′, s) ∼= Z/4Z where the isomorphism is given in Figure 3. Let σ be the

Figure 3: Recurrent sandpiles on G′

sandpile (1, 1, 0), and let t be the spanning tree indicated in Figure 4. Using the procedure
outlined above, we find that the action of σ on t is given by the sequence of spanning trees
in Figure 4. Note that σt = t′ is indeed a spanning tree in G′.

Figure 4: Action of σ on t

Complete graphs and parking sequences

The sandpile group of Kn, the complete graph on n vertices, is already of interest. Recall
that the Laplacian matrix of Kn is nIn − J where In is the n × n identity and J is the
n× n matrix whose entries are all 1. Fix a sink s and let Ls be the corresponding reduced
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Laplacian matrix. Recall that the (k, k) entry of the Smith normal form of Ls is the gcd of
the k × k minors of Ls. For instance b1 = 1, and b2 is the gcd of∣∣∣∣n− 1 −1

−1 n− 1

∣∣∣∣ ∣∣∣∣n− 1 −1
−1 −1

∣∣∣∣ ∣∣∣∣−1 −1
−1 −1

∣∣∣∣
which is n. It can be shown that the gcd of the k× k minors for k ≥ 2 is n. By Theorem 6
this implies the following result.

Theorem 10 κ(Kn, s) ∼=
(
Z/nZ

)n−2
.

Note that by Corollary 7, we have Cayley’s formula κ(Kn) = nn−2. From this result we
can obtain a description of the recurrent sandpiles on Kn. A sandpile σ is recurrent if and
only if at least k vertices contain at least n − k chips for 1 ≤ k ≤ n. This puts recurrent
sandpiles on Kn in bijective correspondence with solutions to the following problem.

Consider n parking spaces labeled 1 to n along a one way street. See Figure 5. There exist
n cars that want to park in these spaces. Each driver has a prefered spot. The drivers
will take turns selecting a spot, and will take the next available spot if they find that their
prefered spot has already been taken. The preferences of the drivers can be expressed as
a sequence si ∈ [n] for 1 ≤ i ≤ n. A parking sequence is a sequence {si} of preferences
such that every driver finds a spot. Note that at most one driver can want spot n, at most
two drivers can want spot n− 1 and so on, establishing the bijection.

Figure 5: Setup in parking problem
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