David Thomas, 18.312 Lecture 3
Announcements:
Office hours changed to Tuesday 12-1pm and Wednesday 1-2pm.
Today:

(1) Mébius Inversion Example
(2) Multiplicative Functions, Dirichlet Series

(3) Permutations, Stirling Numbers

’ Mobius Inversion Example ‘

Recall Mébius Inversion from last lecture. Let f, g be functions on N, then
f(n) =>4, 9(d) if and only if g(n) = >, u(d)f() where u(d) is the

Mobius inversion function.

Fix n € N and let
P(d) = #{Primitive necklaces (a1,...,aq)|a; € [n]}

Primitive means that all rotations are distinct ie. 7(a) # r7(a), for i # j
and i,j € [d]. Fix k € N, let

N (k) = #{all necklaces (a1,...,ax)|a; € [n]}

=> P(d)

d|k
Now using Mdbius inversion we have

P = Y u(@N()

d|k

= u(d)n*/?

dlk

where P(k) is divisible by k. Now we can reduce this to Fermats little
theorem by setting k& = p, then

P(p) = p(1)n” + pu(p)n

=nf —n



Now fix n € N, let
M (k) = #{equivalence classes of necklaces (as,...,ax),a; € [n],up to rotations}

For example if n = 2,k = 4 then

Any necklace a has a stabilizer stab(a) C Cr =< r > and stab(a) =
Cy =< r*/4 > for some divisor d|k. I will show that

P(k/d)

#{a|stab(a) = Cy} =

k/d

Since the stabilizer of g is Cy we have blocks of length k/d of the necklace
that are repeated d times. P(k/d) counts the different kinds of blocks. We
must divide by k/d to correct for overcounting blocks that are rotations of
each other, and hence are the same. Combining these into P,(C%d) counts

the number of unique necklaces up to rotation with stabilizer Cy.




Hence

k/d
d|k
P(d
2 EP
d|k

and substituting P(d) from earlier result yields

M) =30 53 pn!
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letting m = <, we have

M(k):zan%

Ik m|%

p(m) _ o(k/1)
and Z = T/l

n! ¢(k/1)
Tk

= > 6tk

1|k

Now for a quick review of Burnside’s Lemma before we show how to use
it for a more concise proof of our result.

Lemma. Group Action G x X — X, where G and X are finite. The
number of orbits equals ﬁ dec ¥(g), where ¥(g) = #{z € X|gx = z}.



Proof.

> lg) = #{(g, %) € G x X|ga = x}

geG

=Y #{g€Glgx =}

zeX

= Z |stab(x)

zeX
-y |G|
= |Orb(z)|
= |G|(# of orbits )
O

Now let’s apply to our case: G = Cy = {1,71, 72, ..., 7*71}, X = { all necklaces (a1,...,ax)|a; €
[n]}, and ¥(rt) = n? where d = GCD(i, k).

*note: d = GCD(i,k), then r’(a) = (a) if and only if r%(a) = (a) and #{i €
[K]|GCD(i, k) = d} = ¢(k/d)

Then Burnside’s Lemma gives us

ifj — 137 g(k/d)nt
k2 z "

dlk

’Multiplicative Functions, Dirichlet Series‘

Let f,9 : N — C. We will denote convolution by *. Then (f * g)(n) =
2dpn [(d)g (7). 1t is useful to consider dirichlet series which are functions

of the form F(s) = ZnZl fflf). The product of two dirichlet functions is

Zf ng))

- Z Z f kl
E>11>1

_ Z de:n f(k)g(l)

_ Z (f * 9)()

which is also a dirichlet series/function.



Definition: A function f is multiplicative if f(mn) = f(m)f(n) whenever
GCD(m,n) =1.

For example ¢, u,n®, 7(n) = ##{divisors of n},oa(n) = >, d* are all
multiplicative functions.

If f is multiplicative, then 3, -, i) I} prime(f(1)+ o) L 16 4 )s
which is called the Euler Product.

For example, let f(n) =1 forall n, and let

)=

n>1

P prime
Then

o= I a-r)

P prime

f(n

where f(p1...pr) = (—1)% if p; distinct primes and f(n) = 0 if n is not square-free

Hence

This gives us more ways to express Mobius Inversion:
n
ﬂm=2ﬁ@ﬁﬂm=2hgﬁ@
d|n d|n

or equivalently
f=gxlog=pxf
or equivalently



To end this section we will explore two more properties of convolution.
Note: * is associative!
(fxg)xh=fx(gxh)
(FG)H = F(GH)

Example: Compute }_;,, ¢(d)7(7), where 7(n) = #{d|d divides n}.

> o(d)r(5) = (9 7)(n)
d|n

Let § = (p* 1), then 6(n) = 1 when n = 1 and 0 for n > 2. ¢ is the
identity for convolution, § * f = f. Hence counting with our problem we
have

((ux1)* (nx1))(n) = (n*1)(n)
=>d

d|n

Note: if f,g are multiplicative, then f*g is also multiplicative.

Z f*g Z ns))

n>1 n>1 n>1
flp 9(r")
- H Z ks Z pls )
p prlme k>0 >0

- H kasls

P prlme k>0

=HstZf ()

8] prlme m>0 k+l=m
- 1T > 5= DI
p prime m>o0 P dlp™

= f*g(p™)

’ Permutations and Stirling Numbers ‘




Permutation 7 € S,, where S,, = {bijections from [n] — [n]}

In two-line notation

415326

means 7(1) =4,7(2) = 1,7(3) = 5,7(4) = 3,7(5) = 2,7(6) = 6. In cycle
notation this permutation 7 would be represented by (14352)(6) as shown
below

Let ¢(n, k) (signless Stirling number of the first kind) be the number of
m € S, that have exactly k cycles. For example,

e(n,n) =1

This is because there is only one way to put each element in [n] into its

own cycle.
e(n,1) =(n—1)!

Letting 1 be the first element we list in the cycle notation (ie. (1 ... )),
then there are (n-1)! different ways to order the elements that come next
which correspond to the different ways to arrange the cycle.

cnyn—1) = (;‘)

Let ¢; denote the length of the ith cycle and ¢; < ¢;41. Then Zz‘e[n—l] =
n and ¢; > 1. Tt follows that ¢; = 1 for ¢ € [n — 2] and ¢,—; = 2. Hence
there are n-2 cycles of length 1 and one cycle of length 2. There are

<g) ways to choose the elements that are in the 2-cycle. Since cycle

(ab) = (ba), (g) is not undercounting and the result follows.



Lemma. ¢(n, k) =(n—1)e(n—1,k) +c¢(n—1,k—1)

Proof. Given a permutation 7 € S,,_1, one can either

(1) Insert n in an existing cycle, (n — 1)e(n — 1, k)

(2) Make n into its own cycle, ¢(n — 1,k — 1)
k
0|1 2 3 4
111 0 0 O
Here are a few values for ¢(n, k): 511 1 0 o
312 3 1 0
416 11 6 1
Lemma. Y ,_, c(n,k)zf =z(z+1)(x +2)...(z +n—1)

We will prove this next lecture.



