
David Thomas, 18.312 Lecture 3

Announcements:

Office hours changed to Tuesday 12-1pm and Wednesday 1-2pm.

Today:

(1) Möbius Inversion Example

(2) Multiplicative Functions, Dirichlet Series

(3) Permutations, Stirling Numbers

Möbius Inversion Example

Recall Möbius Inversion from last lecture. Let f, g be functions on N, then
f(n) =

∑
d|n g(d) if and only if g(n) =

∑
d|n µ(d)f(nd ) where µ(d) is the

Mobius inversion function.

Fix n ∈ N and let

P (d) = #{Primitive necklaces (a1, . . . , ad)|ai ∈ [n]}

Primitive means that all rotations are distinct ie. ri(a) 6= rj(a), for i 6= j
and i, j ∈ [d]. Fix k ∈ N, let

N(k) = #{all necklaces (a1, . . . , ak)|ai ∈ [n]}
= nk

=
∑
d|k

P (d)

Now using Möbius inversion we have

P (k) =
∑
d|k

µ(d)N(
k

d
)

=
∑
d|k

µ(d)nk/d

where P (k) is divisible by k. Now we can reduce this to Fermats little
theorem by setting k = p, then

P (p) = µ(1)np + µ(p)n

= np − n
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Now fix n ∈ N, let

M(k) = #{equivalence classes of necklaces (a1, . . . , ak), ai ∈ [n],up to rotations}

For example if n = 2, k = 4 then

M(4) = 6

Any necklace a has a stabilizer stab(a) ⊆ Ck =< r > and stab(a) =
Cd =< rk/d > for some divisor d|k. I will show that

#{a|stab(a) = Cd} =
P (k/d)

k/d

Since the stabilizer of a is Cd we have blocks of length k/d of the necklace
that are repeated d times. P (k/d) counts the different kinds of blocks. We
must divide by k/d to correct for overcounting blocks that are rotations of

each other, and hence are the same. Combining these into P (k/d)
k/d counts

the number of unique necklaces up to rotation with stabilizer Cd.
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Hence

M(k) =
∑
d|k

P (k/d)

k/d

=
∑
d|k

P (d)

d

and substituting P(d) from earlier result yields

M(k) =
∑
d|k

1

d

∑
l|d

µ(l)nd/l

=
∑
d|k

1

d

∑
l|d

µ(
d

l
)nl

=
∑
l|k

nl
∑
l|d|k

1

d
µ(
d

l
)

letting m = d
l , we have

M(k) =
∑
l|k

nl
∑
m| kl

µ(m)

ml

=
∑
l|k

nl

l

∑
m| kl

µ(m)

m

and
∑
m| kl

µ(m)

m
=
φ(k/l)

k/l

M(k) =
∑
l|k

nl

l

φ(k/l)

k/l

=
1

k

∑
l|k

φ(k/l)nl

Now for a quick review of Burnside’s Lemma before we show how to use
it for a more concise proof of our result.

Lemma. Group Action G × X → X, where G and X are finite. The
number of orbits equals 1

|G|
∑
g∈G ψ(g), where ψ(g) = #{x ∈ X|gx = x}.
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Proof. ∑
g∈G

ψ(g) = #{(g, x) ∈ G×X|gx = x}

=
∑
x∈X

#{g ∈ G|gx = x}

=
∑
x∈X
|stab(x)|

=
∑
x∈X

|G|
|Orb(x)|

= |G|(# of orbits )

Now let’s apply to our case: G = Ck = {1, r1, r2, . . . , rk−1}, X = { all necklaces (a1, . . . , ak)|ai ∈
[n]}, and ψ(ri) = nd where d = GCD(i, k).

*note: d = GCD(i, k), then ri(a) = (a) if and only if rd(a) = (a) and #{i ∈
[k]|GCD(i, k) = d} = φ(k/d)

Then Burnside’s Lemma gives us

M(k) =
1

k

k∑
i=1

ψ(ri) =
1

k

∑
d|k

φ(k/d)nd

Multiplicative Functions, Dirichlet Series

Let f, g : N → C. We will denote convolution by *. Then (f ∗ g)(n) =∑
d|n f(d)g(nd ). It is useful to consider dirichlet series which are functions

of the form F (s) =
∑
n≥1

f(n)
ns . The product of two dirichlet functions is

F (S)G(S) = (
∑
n≥1

f(n)

ns
)(
∑
n≥1

g(n)

ns
)

=
∑
k≥1

∑
l≥1

f(k)g(l)

(kl)s

=
∑
n≥1

∑
kd=n f(k)g(l)

ns

=
∑
n≥1

(f ∗ g)(n)

ns

which is also a dirichlet series/function.
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Definition: A function f is multiplicative if f(mn) = f(m)f(n) whenever
GCD(m,n) =1.

For example φ, µ, nα, τ(n) = #{divisors of n}, σα(n) =
∑
d|n d

α are all
multiplicative functions.

If f is multiplicative, then
∑
n≥1

f(n)
ns =

∏
p prime(f(1)+ f(p)

ps + f(p2)
p2s +. . . ),

which is called the Euler Product.

For example, let f(n) = 1 forall n, and let

ζ(s) =
∑
n≥1

1

ns

=
∏

p prime

(1 +
1

ps
+

1

p2s
+ . . . )

=
∏

p prime

1

1− p−s

Then

1

ζ(s)
=

∏
p prime

(1− p−s)

=
∑
n≥1

f(n)

ns

where f(p1 . . . pk) = (−1)k if pi distinct primes and f(n) = 0 if n is not square-free

Hence ∑
n≥1

f(n)

ns
=
∑
n≥1

µ(n)

ns

This gives us more ways to express Möbius Inversion:

f(n) =
∑
d|n

g(d)↔ g(n) =
∑
d|n

µ(
n

d
)f(d)

or equivalently
f = g ∗ 1↔ g = µ ∗ f

or equivalently

F (s) = G(s)ζ(s)↔ G(s) =
1

ζ(s)
F (s)
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To end this section we will explore two more properties of convolution.

Note: * is associative!

(f ∗ g) ∗ h = f ∗ (g ∗ h)

(FG)H = F (GH)

Example: Compute
∑
d|n φ(d)τ(nd ), where τ(n) = #{d|d divides n}.∑

d|n

φ(d)τ(
n

d
) = (φ ∗ τ)(n)

= ((µ ∗ n) ∗ (1 ∗ 1))(n)

= ((µ ∗ 1) ∗ (n ∗ 1))(n)

Let δ = (µ ∗ 1), then δ(n) = 1 when n = 1 and 0 for n ≥ 2. δ is the
identity for convolution, δ ∗ f = f . Hence counting with our problem we
have

((µ ∗ 1) ∗ (n ∗ 1))(n) = (n ∗ 1)(n)

=
∑
d|n

d

Note: if f,g are multiplicative, then f*g is also multiplicative.

∑
n≥1

(f ∗ g)(n)

ns
= (
∑
n≥1

f(n)

ns
)(
∑
n≥1

g(n)

ns
)

=
∏

p prime

(
∑
k≥0

f(pk)

pks
)(
∑
l≥0

g(pl)

pls
)

=
∏

p prime

∑
k,l≥0

f(pk)g(pl)

pkspls

=
∏

p prime

∑
m≥0

1

pms

∑
k+l=m

f(pk)g(pl)

=
∏

p prime

∑
m≥0

1

pms

∑
d|pm

f(d)g(
pm

d
)

= f ∗ g(pm)

Permutations and Stirling Numbers
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Permutation π ∈ Sn where Sn = {bijections from [n]→ [n]}
In two-line notation

1 2 3 4 5 6

--------------

4 1 5 3 2 6

means π(1) = 4, π(2) = 1, π(3) = 5, π(4) = 3, π(5) = 2, π(6) = 6. In cycle
notation this permutation π would be represented by (14352)(6) as shown
below

Let c(n, k) (signless Stirling number of the first kind) be the number of
π ∈ Sn that have exactly k cycles. For example,

c(n, n) = 1

This is because there is only one way to put each element in [n] into its
own cycle.

c(n, 1) = (n− 1)!

Letting 1 be the first element we list in the cycle notation (ie. (1 . . . )),
then there are (n-1)! different ways to order the elements that come next
which correspond to the different ways to arrange the cycle.

c(n, n− 1) =

(
n
2

)
Let ci denote the length of the ith cycle and ci ≤ ci+1. Then

∑
i∈[n−1] ci =

n and ci ≥ 1. It follows that ci = 1 for i ∈ [n − 2] and cn−1 = 2. Hence
there are n-2 cycles of length 1 and one cycle of length 2. There are(
n
2

)
ways to choose the elements that are in the 2-cycle. Since cycle

(ab) = (ba),

(
n
2

)
is not undercounting and the result follows.
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Lemma. c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1)

Proof. Given a permutation π ∈ Sn−1, one can either

(1) Insert n in an existing cycle, (n− 1)c(n− 1, k)

(2) Make n into its own cycle, c(n− 1, k − 1)

Here are a few values for c(n, k):

k
0 1 2 3 4
1 1 0 0 0

n 2 1 1 0 0
3 2 3 1 0
4 6 11 6 1

Lemma.
∑n
k=1 c(n, k)xk = x(x+ 1)(x+ 2) . . . (x+ n− 1)

We will prove this next lecture.
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