David Thomas, 18.312 Lecture 3

Announcements:

Office hours changed to Tuesday 12-1pm and Wednesday 1-2pm.

Today:

- (1) Möbius Inversion Example
- (2) Multiplicative Functions, Dirichlet Series
- (3) Permutations, Stirling Numbers

Möbius Inversion Example

Recall Möbius Inversion from last lecture. Let f,g be functions on \mathbb{N} , then $f(n) = \sum_{d|n} g(d)$ if and only if $g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$ where $\mu(d)$ is the Mobius inversion function.

Fix $n \in \mathbb{N}$ and let

$$P(d) = \#\{\text{Primitive necklaces } (a_1, \dots, a_d) | a_i \in [n]\}$$

Primitive means that all rotations are distinct ie. $r^i(\underline{a}) \neq r^j(\underline{a})$, for $i \neq j$ and $i, j \in [d]$. Fix $k \in \mathbb{N}$, let

$$N(k) = \#\{\text{all necklaces } (a_1, \dots, a_k) | a_i \in [n]\}$$

= n^k
= $\sum_{d|k} P(d)$

Now using Möbius inversion we have

$$P(k) = \sum_{d|k} \mu(d) N(\frac{k}{d})$$
$$= \sum_{d|k} \mu(d) n^{k/d}$$

where P(k) is divisible by k. Now we can reduce this to Fermats little theorem by setting k=p, then

$$P(p) = \mu(1)n^p + \mu(p)n$$
$$= n^p - n$$

Now fix $n \in \mathbb{N}$, let

 $M(k) = \#\{\text{equivalence classes of necklaces } (a_1, \dots, a_k), a_i \in [n], \text{ up to rotations}\}$

For example if n = 2, k = 4 then

$$M(4) = 6$$

Any necklace \underline{a} has a stabilizer $stab(a)\subseteq C_k=< r>$ and $stab(a)=C_d=< r^{k/d}>$ for some divisor d|k. I will show that

$$\#\{\underline{a}|stab(\underline{a})=C_d\}=\frac{P(k/d)}{k/d}$$

Since the stabilizer of \underline{a} is C_d we have blocks of length k/d of the necklace that are repeated d times. P(k/d) counts the different kinds of blocks. We must divide by k/d to correct for overcounting blocks that are rotations of each other, and hence are the same. Combining these into $\frac{P(k/d)}{k/d}$ counts the number of unique necklaces up to rotation with stabilizer C_d .

Hence

$$M(k) = \sum_{d|k} \frac{P(k/d)}{k/d}$$
$$= \sum_{d|k} \frac{P(d)}{d}$$

and substituting P(d) from earlier result yields

$$M(k) = \sum_{d|k} \frac{1}{d} \sum_{l|d} \mu(l) n^{d/l}$$
$$= \sum_{d|k} \frac{1}{d} \sum_{l|d} \mu(\frac{d}{l}) n^{l}$$
$$= \sum_{l|k} n^{l} \sum_{l|d|k} \frac{1}{d} \mu(\frac{d}{l})$$

letting $m = \frac{d}{l}$, we have

$$M(k) = \sum_{l|k} n^l \sum_{m|\frac{k}{l}} \frac{\mu(m)}{ml}$$

$$= \sum_{l|k} \frac{n^l}{l} \sum_{m|\frac{k}{l}} \frac{\mu(m)}{m}$$
and
$$\sum_{m|\frac{k}{l}} \frac{\mu(m)}{m} = \frac{\phi(k/l)}{k/l}$$

$$M(k) = \sum_{l|k} \frac{n^l}{l} \frac{\phi(k/l)}{k/l}$$

$$= \frac{1}{k} \sum_{l|k} \phi(k/l) n^l$$

Now for a quick review of Burnside's Lemma before we show how to use it for a more concise proof of our result.

Lemma. Group Action $G \times X \to X$, where G and X are finite. The number of orbits equals $\frac{1}{|G|} \sum_{g \in G} \psi(g)$, where $\psi(g) = \#\{x \in X | gx = x\}$.

Proof.

$$\begin{split} \sum_{g \in G} \psi(g) &= \# \{ (g,x) \in G \times X | gx = x \} \\ &= \sum_{x \in X} \# \{ g \in G | gx = x \} \\ &= \sum_{x \in X} |stab(x)| \\ &= \sum_{x \in X} \frac{|G|}{|Orb(x)|} \\ &= |G| (\# \text{ of orbits }) \end{split}$$

Now let's apply to our case: $G = C_k = \{1, r^1, r^2, \dots, r^{k-1}\}, X = \{\text{ all necklaces } (a_1, \dots, a_k) | a_i \in [n]\}, \text{ and } \psi(r^i) = n^d \text{ where } d = GCD(i, k).$

*note: d=GCD(i,k), then $r^i(\underline{a})=(\underline{a})$ if and only if $r^d(\underline{a})=(\underline{a})$ and $\#\{i\in[k]|GCD(i,k)=d\}=\phi(k/d)$

Then Burnside's Lemma gives us

$$M(k) = \frac{1}{k} \sum_{i=1}^{k} \psi(r^i) = \frac{1}{k} \sum_{d|k} \phi(k/d) n^d$$

Multiplicative Functions, Dirichlet Series

Let $f,g:\mathbb{N}\to\mathbb{C}$. We will denote convolution by *. Then $(f*g)(n)=\sum_{d\mid n}f(d)g(\frac{n}{d})$. It is useful to consider dirichlet series which are functions of the form $F(s)=\sum_{n\geq 1}\frac{f(n)}{n^s}$. The product of two dirichlet functions is

$$F(S)G(S) = (\sum_{n\geq 1} \frac{f(n)}{n^s})(\sum_{n\geq 1} \frac{g(n)}{n^s})$$

$$= \sum_{k\geq 1} \sum_{l\geq 1} \frac{f(k)g(l)}{(kl)^s}$$

$$= \sum_{n\geq 1} \frac{\sum_{kd=n} f(k)g(l)}{n^s}$$

$$= \sum_{n\geq 1} \frac{(f*g)(n)}{n^s}$$

which is also a dirichlet series/function.

Definition: A function f is *multiplicative* if f(mn) = f(m)f(n) whenever GCD(m,n) = 1.

For example $\phi, \mu, n^{\alpha}, \tau(n) = \#\{\text{divisors of n}\}, \sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha} \text{ are all multiplicative functions.}$

If f is multiplicative, then $\sum_{n\geq 1} \frac{f(n)}{n^s} = \prod_{\text{p prime}} (f(1) + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots)$, which is called the Euler Product.

For example, let f(n) = 1 for all n, and let

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$$

$$= \prod_{\text{p prime}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots\right)$$

$$= \prod_{\text{p prime}} \frac{1}{1 - p^{-s}}$$

Then

$$\frac{1}{\zeta(s)} = \prod_{\text{p prime}} (1 - p^{-s})$$
$$= \sum_{n>1} \frac{f(n)}{n^s}$$

where $f(p_1 \dots p_k) = (-1)^k$ if p_i distinct primes and f(n) = 0 if n is not square-free

Hence

$$\sum_{n\geq 1}\frac{f(n)}{n^s}=\sum_{n\geq 1}\frac{\mu(n)}{n^s}$$

This gives us more ways to express Möbius Inversion:

$$f(n) = \sum_{d|n} g(d) \leftrightarrow g(n) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$$

or equivalently

$$f = g * 1 \leftrightarrow g = \mu * f$$

or equivalently

$$F(s) = G(s)\zeta(s) \leftrightarrow G(s) = \frac{1}{\zeta(s)}F(s)$$

To end this section we will explore two more properties of convolution.

Note: * is associative!

$$(f * g) * h = f * (g * h)$$
$$(FG)H = F(GH)$$

Example: Compute $\sum_{d|n} \phi(d) \tau(\frac{n}{d})$, where $\tau(n) = \#\{d | d \text{ divides n}\}$.

$$\sum_{d|n} \phi(d)\tau(\frac{n}{d}) = (\phi * \tau)(n)$$

$$= ((\mu * n) * (1 * 1))(n)$$

$$= ((\mu * 1) * (n * 1))(n)$$

Let $\delta=(\mu*1)$, then $\delta(n)=1$ when n=1 and 0 for $n\geq 2$. δ is the identity for convolution, $\delta*f=f$. Hence counting with our problem we have

$$((\mu * 1) * (n * 1))(n) = (n * 1)(n)$$
$$= \sum_{d|n} d$$

Note: if f,g are multiplicative, then f*g is also multiplicative.

$$\begin{split} \sum_{n\geq 1} \frac{(f*g)(n)}{n^s} &= (\sum_{n\geq 1} \frac{f(n)}{n^s}) (\sum_{n\geq 1} \frac{g(n)}{n^s}) \\ &= \prod_{\text{p prime}} (\sum_{k\geq 0} \frac{f(p^k)}{p^{ks}}) (\sum_{l\geq 0} \frac{g(p^l)}{p^{ls}}) \\ &= \prod_{\text{p prime}} \sum_{k,l\geq 0} \frac{f(p^k)g(p^l)}{p^{ks}p^{ls}} \\ &= \prod_{\text{p prime}} \sum_{m\geq 0} \frac{1}{p^{ms}} \sum_{k+l=m} f(p^k)g(p^l) \\ &= \prod_{\text{p prime}} \sum_{m\geq 0} \frac{1}{p^{ms}} \sum_{d|p^m} f(d)g(\frac{p^m}{d}) \\ &= f*g(p^m) \end{split}$$

Permutations and Stirling Numbers

Permutation $\pi \in S_n$ where $S_n = \{\text{bijections from } [n] \to [n]\}$ In two-line notation

1 2 3 4 5 6

4 1 5 3 2 6

means $\pi(1) = 4$, $\pi(2) = 1$, $\pi(3) = 5$, $\pi(4) = 3$, $\pi(5) = 2$, $\pi(6) = 6$. In cycle notation this permutation π would be represented by (14352)(6) as shown below

Let c(n,k) (signless Stirling number of the first kind) be the number of $\pi \in S_n$ that have exactly k cycles. For example,

$$c(n,n)=1$$

This is because there is only one way to put each element in [n] into its own cycle.

$$c(n,1) = (n-1)!$$

Letting 1 be the first element we list in the cycle notation (ie. $(1 \dots)$), then there are (n-1)! different ways to order the elements that come next which correspond to the different ways to arrange the cycle.

$$c(n, n-1) = \binom{n}{2}$$

Let c_i denote the length of the ith cycle and $c_i \leq c_{i+1}$. Then $\sum_{i \in [n-1]} c_i = n$ and $c_i \geq 1$. It follows that $c_i = 1$ for $i \in [n-2]$ and $c_{n-1} = 2$. Hence there are n-2 cycles of length 1 and one cycle of length 2. There are $\binom{n}{2}$ ways to choose the elements that are in the 2-cycle. Since cycle

 $(ab) = (ba), \binom{n}{2}$ is not undercounting and the result follows.

Lemma.
$$c(n,k) = (n-1)c(n-1,k) + c(n-1,k-1)$$

Proof. Given a permutation $\pi \in S_{n-1}$, one can either

- (1) Insert n in an existing cycle, (n-1)c(n-1,k)
- (2) Make n into its own cycle, c(n-1,k-1)

Lemma.
$$\sum_{k=1}^{n} c(n,k)x^k = x(x+1)(x+2)\dots(x+n-1)$$

We will prove this next lecture.