18.312: Algebraic Combinatorics Lionel Levine

Lecture 5

Lecture date: Feb 15, 2011 Notes by: David Witmer

1 Stirling inverse matrices
From last class, we have the following proposition:

Proposition 1
S(n,k)s(k,j) = 0n;
k=0

where S(n, k) are Stirling numbers of the second kind, s(k,j) are signed Stirling numbers
of the first kind such that ‘
S(k?]) = (_1)k_jc(k7j)7

1 ifn=j
Onj = ]
0 otherwise

Example 2 Consider the n = 4 case, in which S and s are 4 X 4 matrices:

and

1000 1 0 0 0

1100 1 1 0 0
-1 .
ST=l1310] T |2 3 1 o=

17 6 1 6 11 -6 1

Proof: Recall these two facts from last class:

Fact 3

Fact 4
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First, we will find an expression analagous to fact 3 in terms of signed Stirling numbers of
the first kind.

=(-1)"(—=z)(—z+1)---(—x+n—1) by fact 3

=xz(x—1)---(r—n+1) since we have one -1 per factor

Now, let vector space V;, = {polynomials in z of degree < n with constant term 0}. Con-

sider two bases for V,,:
e; =1

and
fi=zx(x—=1)---(x—i+1)
for ¢ from 1 to n.
Define L : V,, — V,, to be the linear operator such that L(e;) = f;.
From above, we know that

i

fi="Y s, ke

k=0

so the matrix of L in the basis e, ..., e, is (s(i, k))]—; -
Then by fact 4, the matrix of L=! in the basis f1,..., fa is (S(n, k)i =1-

That is,
> S(n,k) fr = en
k=0

Substituting in for fi, we get

Rearranging, we get
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Therefore,

S(n,k)s(k,j) = onj.

2 Linear recurrences
Recall the following example from last class:

Example 5 The Fibonacci sequence is defined by the recurrence
Fn+2 :Fn+1 + F,

form > 1 with F1 = 1 and Fo = 1. We can write this recurrence in terms of the shift

operator E as
(E> - E—-1)F =0.

Factoring, we see that B
(E—-¢)(E—-¢)=0

where

1 5 - 1—=4/5
o= +2\f:1.618... and ¢ = f:—0.618....
We can then write B
F, = a¢™ + bo™.
Using the initial conditions F} = F» = 1, we find that a = % and b = —%, S0
1 n amn

V5

Since ¢" rapidly becomes very small, we can say that

¢n
~ —=.

Fy,
V5

For instance, Figp = 55 and d)—\/lg = 55.0036.. ..

Now, we wish to generalize these results. We wish to work over an algebraically closed field
so we can factor. We will use C.
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Definition 6 A sequence s = (sg, 51, S2,...) € C® obeys a linear recurrence of order k if
there exist ag,ai,...,ap—1 € C such that

k—1
Sn+k = Z QiSn+i
i=0
for alln > 0.

We can therefore write linear recurrences in the form
p(E)s=0

where p is a polynomial in C[x] of degree k.

Definition 7 Suppose p factors as
p(E)=(E—¢1)...(E— ¢)

where ¢1, ..., ¢ are distinct complex numbers. Then s satisfies a simple linear recurrence.

Theorem 8 The sequence s satisfies the simple linear recurrence p(E)s = 0 if and only if
there exist c1,...,cp € C such that

Sy = 01(2571I 4+ ...+ Ckgbz
That is, s, can be expressed as a linear combination of exponential sequences.

Proof: p(E) : C*® — C™ is a linear operator. ker(p(F)) = {s | p(E)s = 0} is a subspace
of C=. Let e{) = ¢'. We want to show that e, ... e¥) form a basis for ker(p(E)).

First, we need to show that e(®) € ker(p(E)). The e()’s are eigenvectors of the shift operator.
(B = el = 6 = i67 = iel),

Thus, Fel® = ¢;e®, so e is an eigenvector of E with eigenvalue ¢;. This means that
e € ker(E — ¢;), or (E — ¢)e®™ = 0. Since multiplication commutes, we can write
p(E) = q(E)(E — ¢;) for some polynomial q. Then we have that

p(E)et) = g(E)(E — ¢i)el?
so el € ker(p(E)).
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Next, we show that eM), ..., e(®) are linearly independent. Consider

1 .1
T )
N 2 2
det (egz))i?;kl’jlzo =det | P71 - i
k-1 k-1
1 k

This is the Vandermonde determinant, so we see that

i)\ b k—1
det (ey))i:l,j:o = H (¢i — ;).
1<J
Since we are dealing with a simple linear recurrence, all roots of p must be distinct, so this
determinant is nonzero. This means that there is no linear dependence among the first k

terms of the sequences, so there is no linear dependence among the sequences. Therefore,
e@ ... ek are linearly independent.

Finally, to show that eV, ... e®) form a basis, we need to show that dim(ker(p(E))) = k.
A sequence s € ker(p(FE)) is determined by its first k terms so, ..., sx—1 since all subsequent

terms Sk, Sg+1, ... are determinted by the recurrence. Let f]@ = 0;j for 1 < 4,5 < k. Then

fO . f®) form a basis of size k. All bases of ker(p(E)) must have the same cardinality.
Therefore, eV, ..., e®) form a basis for ker(p(E)). O

Example 9 The sequence s, = 3™ — 2" obeys a linear recurrence. Let ¢1 = 3 and ¢p2 = 2.
Then
p(E) = (E —-3)(F —2)=FE*-5E +6,

80 our recurrence is
Sn+42 — DSpy1 + 65, = 0.

What if p(F) has repeated roots?

Example 10 Consider the sequence s such that

Sp+3 = 3Sn+2 — 3Sn+1 + Sn.

Then
p(E)=FE*-3E*+3E—-1=(E 1) = D3

where D = E — 1 is the difference operator. One solution is s, = 1™ = 1. However, we
expect to have two other linearly independent solutions since this a linear recurrence of order

3. These two additional solutions are s, =n and s, = n2.

9-9



D is analagous to the operator % for functions, so the corresponding differential equation
to this recurrence is
d 3
[dt] f(t)=0.

Taking powers of the operator is the same as function composition, so this is equivalent to

d3
ﬁf(t) =0,

which has similar solutions f(t) =1, f(t) =t, and f(t) = 2.
This example brings us to the following lemma.

Lemma 11 D™s =0 if and only if s, = q(n) for some polynomial q of degree less than or
equal to m — 1.

Proof: We want to show that 1,n,n2,...,n™ ! form a basis for ker(D,,). We know that
dim(ker(D™)) = m since a sequence that satisfies linear recurrence of order m is determined

by its first m terms, which can be chosen arbitrarily as described above.
We first show that 1,n,n%,...,n™ ! are linearly independent. If 1,n,n2,...,n™ ! were
linearly dependent, then there would be ¢;’s not all equal to zero such that

m—1
Z en' =0 for all n.
i=0

However, this would be a polynomial of finite degree with infinitely many roots. Therefore,
all of the ¢;’s must be 0 and 1,7n,n%, ..., 7™ ! must be linearly independent.

It remains to show that 1,n,n2,...,n™ 1 € ker(D™). We will prove this by induction on
m. By our induction hypothesis, 1,n,n2,...,n™ 2 € ker(D™!), so

D™[n'] = DID™ ' [n]] = D[0] =0 fori < m — 2.

We now need to show that D™[n™~!] = 0. We first find an expression for D[n™1].
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Then we substitute this expression into D™ [n™]:

Dm[nmfl] — Dmfl[D[nmfl]]

m—2 m 1

_ ym—1 - k
k=0

=0 by the inductive hypothesis since we are applying D™ ! to a polynomial of degree m — 2

Therefore, 1,n,n2,...,n™ ! € ker(D™) and 1,n,n2,...,n™ ! form a basis for ker(D,,). O

So far, we have looked at two special cases of linear recurrences: distinct roots and powers
of the difference operator. We now consider the solution to a general linear recurrence.

Theorem 12 The sequence s = (Sp, 1, S2, ... ) satisfies the linear recurrence

(E—¢i)™s=0
1

k
1=

if and only if
sn=q(n)¢7 + ... + qr(n)of,

where each q; is a polynomial of degree at most m; — 1.

The proof is similar to the proofs of the previous lemma and theorem. We will now continue
to explore the connection between linear recurrences and differential equations.

3 Exponential generating functions

Definition 13 Given a sequence s = (so, $1,82,...), the exponential generating function
of s is the power series

2 n
SS9 Snk
Fulw)=so+s1m+ = 4.+

n!

Example 14 Consider the sequence s, = 1 for all n. Then

x xX
Fs(z) = Zm =e”.
n=0

Why is there a factorial in the denominator of each term?
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d " nxnfl _ xnfl
n!

dx n! (n—1)
o) )
d d 9T st
dx[fs(x)]:d [so—i—slm—i—Q ok
spr™ ! Spa1x™
=81+ s+ ...+ n ntl 4+ ...

(n—1)! n!
= Fis(x).

Differentiating an exponential generating function corresponds to shifting its sequence. In
particular, if s obeys a linear recurrence p(E)s = 0, then its exponential generating function
Fs(z) obeys the linear ordinary differential equation

(L) 710

Why is this true?
d
p (dCC) fs(m) = fp(E)s(x) = ]:0(‘7:) =0.

Example 15 Consider this ordinary differential equation:

(@) = f'(@) + f(2).

We can write f(x) as

so finding s satisfying the linear recurrence

Sn4+2 = Sn+1 + Sn

results in f(x) satisfying the ODE. In this case, s, = Fy,, the Fibonacci Sequence, gives a
solution.

Example 16 Consider the power series for sinx. We know that
d? . .
Jg2 Sinz = —sinz.

In operator notation, we can write this as

[+

sinz = 0.
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We can write sinx as

. s Spx™
sing = 30 0
n=0
where s satisfies the recurrence
Spy2 +8p =0

with so = 0 and s; = 1 since sin0 = 0 and sin’ 0 = cosO0 = 1. The recurrence and initial
values determine all of s, so we have that

2 x?;

x
i =0+1 O—+—-1—+4+....
sinx + 1o + 2+ 3!+

Now, we will make a more explicit connection between the shift operator and the derivative.

4 Relating £ and %

We can think of applying the shift operator to functions in the following manner:

(Ef)(z) = flz+1)
(E*f)(x) = f(z +2)
(E"f)(x) = f(x +h) for h € R.

Then we can write

i h
o (B - @)
h—0 h

By L’Hopital’s Rule,

oah -1 ~ a'lna
lim = lim
h—0 h h—0 1
=Ina

so, by analogy, we might say that

. (EM—1
hm< . >f:(lnE)f

h—0

so that

d
— =InF.
dx .
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There is a sense in which this is true, as we might then say based on knowledge of the
Taylor series for e* that

PR PR (I R Ay (U R
e der 2 \dx Tl \de

This leads to
Bf = fo+1)= f@) + f/@)+ 3@+ b @)+

which is indeed the Taylor series for f(x + 1) centered at f(z).
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