
18.312: Algebraic Combinatorics Lionel Levine

Lecture 5

Lecture date: Feb 15, 2011 Notes by: David Witmer

1 Stirling inverse matrices

From last class, we have the following proposition:

Proposition 1
n∑
k=0

S(n, k)s(k, j) = δnj

where S(n, k) are Stirling numbers of the second kind, s(k, j) are signed Stirling numbers
of the first kind such that

s(k, j) = (−1)k−jc(k, j),

and

δnj =

{
1 if n = j

0 otherwise

Example 2 Consider the n = 4 case, in which S and s are 4× 4 matrices:

S−1 =


1 0 0 0
1 1 0 0
1 3 1 0
1 7 6 1


−1

=


1 0 0 0
−1 1 0 0
2 −3 1 0
−6 11 −6 1

 = s

Proof: Recall these two facts from last class:

Fact 3
n∑
k=0

c(n, k)xk = x(x+ 1) · · · (x+ n− 1)

Fact 4
n∑
k=0

S(n, k)x(x− 1) · · · (x− k + 1) = xn
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First, we will find an expression analagous to fact 3 in terms of signed Stirling numbers of
the first kind.

n∑
k=0

s(n, k)xk =

n∑
k=0

(−1)n−kc(n, k)xk

= (−1)n
n∑
k=0

c(n, k)(−x)k

= (−1)n(−x)(−x+ 1) · · · (−x+ n− 1) by fact 3

= x(x− 1) · · · (x− n+ 1) since we have one -1 per factor

Now, let vector space Vn = {polynomials in x of degree ≤ n with constant term 0}. Con-
sider two bases for Vn:

ei = xi

and
fi = x(x− 1) · · · (x− i+ 1)

for i from 1 to n.

Define L : Vn → Vn to be the linear operator such that L(ei) = fi.

From above, we know that

fi =
i∑

k=0

s(i, k)ek

so the matrix of L in the basis e1, . . . , en is (s(i, k))ni,k=1.

Then by fact 4, the matrix of L−1 in the basis f1, . . . , fn is (S(n, k))ni,k=1.

That is,
n∑
k=0

S(n, k)fk = ek.

Substituting in for fk, we get

n∑
k=0

S(n, k)
n∑
j=0

s(k, j)ej = en.

Rearranging, we get
n∑
j=0

(
n∑
k=0

S(n, k)s(k, j)

)
ej = en.
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Therefore,
n∑
k=0

S(n, k)s(k, j) = δnj .

2

2 Linear recurrences

Recall the following example from last class:

Example 5 The Fibonacci sequence is defined by the recurrence

Fn+2 = Fn+1 + Fn

for n ≥ 1 with F1 = 1 and F2 = 1. We can write this recurrence in terms of the shift
operator E as

(E2 − E − 1)F = 0.

Factoring, we see that
(E − φ)(E − φ̄) = 0

where

φ =
1 +
√

5

2
= 1.618 . . . and φ̄ =

1−
√

5

2
= −0.618 . . . .

We can then write
Fn = aφn + bφ̄n.

Using the initial conditions F1 = F2 = 1, we find that a = 1√
5

and b = − 1√
5
, so

Fn =
1√
5

(φn − φ̄n).

Since φ̄n rapidly becomes very small, we can say that

Fn ≈
φn√

5
.

For instance, F10 = 55 and φ10√
5

= 55.0036 . . ..

Now, we wish to generalize these results. We wish to work over an algebraically closed field
so we can factor. We will use C.
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Definition 6 A sequence s = (s0, s1, s2, . . .) ∈ C∞ obeys a linear recurrence of order k if
there exist a0, a1, . . . , ak−1 ∈ C such that

sn+k =

k−1∑
i=0

aisn+i

for all n ≥ 0.

We can therefore write linear recurrences in the form

p(E)s = 0

where p is a polynomial in C[x] of degree k.

Definition 7 Suppose p factors as

p(E) = (E − φ1) . . . (E − φk)

where φ1, . . . , φk are distinct complex numbers. Then s satisfies a simple linear recurrence.

Theorem 8 The sequence s satisfies the simple linear recurrence p(E)s = 0 if and only if
there exist c1, . . . , ck ∈ C such that

sn = c1φ
n
1 + . . .+ ckφ

n
k .

That is, sn can be expressed as a linear combination of exponential sequences.

Proof: p(E) : C∞ → C∞ is a linear operator. ker(p(E)) = {s | p(E)s = 0} is a subspace

of C∞. Let e
(i)
n = φni . We want to show that e(1), . . . , e(k) form a basis for ker(p(E)).

First, we need to show that e(i) ∈ ker(p(E)). The e(i)’s are eigenvectors of the shift operator.

(Ee(i))n = e
(i)
n+1 = φn+1

i = φiφ
n
i = φie

(i)
n ,

Thus, Ee(i) = φie
(i), so e(i) is an eigenvector of E with eigenvalue φi. This means that

e(i) ∈ ker(E − φi), or (E − φi)e
(i) = 0. Since multiplication commutes, we can write

p(E) = q(E)(E − φi) for some polynomial q. Then we have that

p(E)e(i) = q(E)(E − φi)e(i)

= q(E)0

= 0,

so e(i) ∈ ker(p(E)).
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Next, we show that e(1), . . . , e(k) are linearly independent. Consider

det (e
(i)
j )k,k−1i=1,j=0 = det


1 · · · 1
φ1 · · · φk
φ21 · · · φ2k
...

. . .
...

φk−11 · · · φk−1k


This is the Vandermonde determinant, so we see that

det (e
(i)
j )k,k−1i=1,j=0 =

∏
i<j

(φi − φj).

Since we are dealing with a simple linear recurrence, all roots of p must be distinct, so this
determinant is nonzero. This means that there is no linear dependence among the first k
terms of the sequences, so there is no linear dependence among the sequences. Therefore,
e(1), · · · , e(k) are linearly independent.

Finally, to show that e(1), . . . , e(k) form a basis, we need to show that dim(ker(p(E))) = k.
A sequence s ∈ ker(p(E)) is determined by its first k terms s0, . . . , sk−1 since all subsequent

terms sk, sk+1, . . . are determinted by the recurrence. Let f
(i)
j = δij for 1 ≤ i, j ≤ k. Then

f (1), . . . , f (k) form a basis of size k. All bases of ker(p(E)) must have the same cardinality.
Therefore, e(1), . . . , e(k) form a basis for ker(p(E)). 2

Example 9 The sequence sn = 3n − 2n obeys a linear recurrence. Let φ1 = 3 and φ2 = 2.
Then

p(E) = (E − 3)(E − 2) = E2 − 5E + 6,

so our recurrence is
sn+2 − 5sn+1 + 6sn = 0.

What if p(E) has repeated roots?

Example 10 Consider the sequence s such that

sn+3 = 3sn+2 − 3sn+1 + sn.

Then
p(E) = E3 − 3E2 + 3E − 1 = (E − 1)3 = D3,

where D = E − 1 is the difference operator. One solution is sn = 1n = 1. However, we
expect to have two other linearly independent solutions since this a linear recurrence of order
3. These two additional solutions are sn = n and sn = n2.
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D is analagous to the operator d
dt for functions, so the corresponding differential equation

to this recurrence is [
d

dt

]3
f(t) = 0.

Taking powers of the operator is the same as function composition, so this is equivalent to

d3

dt3
f(t) = 0,

which has similar solutions f(t) = 1, f(t) = t, and f(t) = t2.

This example brings us to the following lemma.

Lemma 11 Dms = 0 if and only if sn = q(n) for some polynomial q of degree less than or
equal to m− 1.

Proof: We want to show that 1, n, n2, . . . , nm−1 form a basis for ker(Dm). We know that
dim(ker(Dm)) = m since a sequence that satisfies linear recurrence of order m is determined
by its first m terms, which can be chosen arbitrarily as described above.

We first show that 1, n, n2, . . . , nm−1 are linearly independent. If 1, n, n2, . . . , nm−1 were
linearly dependent, then there would be ci’s not all equal to zero such that

m−1∑
i=0

cin
i = 0 for all n.

However, this would be a polynomial of finite degree with infinitely many roots. Therefore,
all of the ci’s must be 0 and 1, n, n2, . . . , nm−1 must be linearly independent.

It remains to show that 1, n, n2, . . . , nm−1 ∈ ker(Dm). We will prove this by induction on
m. By our induction hypothesis, 1, n, n2, . . . , nm−2 ∈ ker(Dm−1), so

Dm[ni] = D[Dm−1[ni]] = D[0] = 0 for i ≤ m− 2.

We now need to show that Dm[nm−1] = 0. We first find an expression for D[nm−1].

D[nm−1] = (E − 1)nm−1

= (n+ 1)m−1 − nm−1

=
m−1∑
k=0

(
m− 1
k

)
nk − nm−1 by the Binomial Theorem

=

m−2∑
k=0

(
m− 1
k

)
nk Note that this is a polynomial of degree m− 2.
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Then we substitute this expression into Dm[nm−1]:

Dm[nm−1] = Dm−1[D[nm−1]]

= Dm−1

[
m−2∑
k=0

(
m− 1
k

)
nk

]
= 0 by the inductive hypothesis since we are applying Dm−1 to a polynomial of degree m− 2

Therefore, 1, n, n2, . . . , nm−1 ∈ ker(Dm) and 1, n, n2, . . . , nm−1 form a basis for ker(Dm). 2

So far, we have looked at two special cases of linear recurrences: distinct roots and powers
of the difference operator. We now consider the solution to a general linear recurrence.

Theorem 12 The sequence s = (s0, s1, s2, . . . ) satisfies the linear recurrence

k∏
i=1

(E − φi)mis = 0

if and only if
sn = q1(n)φn1 + . . .+ qk(n)φnk ,

where each qi is a polynomial of degree at most mi − 1.

The proof is similar to the proofs of the previous lemma and theorem. We will now continue
to explore the connection between linear recurrences and differential equations.

3 Exponential generating functions

Definition 13 Given a sequence s = (s0, s1, s2, . . . ), the exponential generating function
of s is the power series

Fs(x) = s0 + s1x+
s2x

2

2
+ . . .+

snx
n

n!
+ . . . .

Example 14 Consider the sequence sn = 1 for all n. Then

Fs(x) =
∞∑
n=0

xn

n!
= ex.

Why is there a factorial in the denominator of each term?
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d

dx

[
xn

n!

]
=
nxn−1

n!
=

xn−1

(n− 1)!
,

so
d

dx
[Fs(x)] =

d

dx

[
s0 + s1x+

s2x
2

2
+ . . .+

snxn

n!
+ . . .

]
= s1 + s2x+ . . .+

snx
n−1

(n− 1)!
+
sn+1x

n

n!
+ . . .

= FEs(x).

Differentiating an exponential generating function corresponds to shifting its sequence. In
particular, if s obeys a linear recurrence p(E)s = 0, then its exponential generating function
Fs(x) obeys the linear ordinary differential equation

p

(
d

dx

)
Fs(x) = 0.

Why is this true?

p

(
d

dx

)
Fs(x) = Fp(E)s(x) = F0(x) = 0.

Example 15 Consider this ordinary differential equation:

f ′′(x) = f ′(x) + f(x).

We can write f(x) as

f(x) =
∞∑
n=0

snx
n

n!

so finding s satisfying the linear recurrence

sn+2 = sn+1 + sn

results in f(x) satisfying the ODE. In this case, sn = Fn, the Fibonacci Sequence, gives a
solution.

Example 16 Consider the power series for sinx. We know that

d2

dx2
sinx = − sinx.

In operator notation, we can write this as[[
d

dx

]2
+ 1

]
sinx = 0.
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We can write sinx as

sinx =
∞∑
n=0

snx
n

n!

where s satisfies the recurrence
sn+2 + sn = 0

with s0 = 0 and s1 = 1 since sin 0 = 0 and sin′ 0 = cos 0 = 1. The recurrence and initial
values determine all of s, so we have that

sinx = 0 + 1x+ 0
x2

2
+−1

x3

3!
+ . . . .

Now, we will make a more explicit connection between the shift operator and the derivative.

4 Relating E and d
dx

We can think of applying the shift operator to functions in the following manner:

(Ef)(x) = f(x+ 1)

(E2f)(x) = f(x+ 2)

(Ehf)(x) = f(x+ h) for h ∈ R.

Then we can write

df

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

(Ehf)(x)− f(x)

h

= lim
h→0

(
Eh − 1

h

)
f Things become less rigorous here.

By L’Hopital’s Rule,

lim
h→0

ah − 1

h
= lim

h→0

ah ln a

1

= ln a

so, by analogy, we might say that

lim
h→0

(
Eh − 1

h

)
f = (lnE)f

so that
d

dx
= lnE.
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There is a sense in which this is true, as we might then say based on knowledge of the
Taylor series for ex that

E = e
d
dx = 1 +

d

dx
+

1

2

(
d

dx

)2

+ . . .+
1

n!

(
d

dx

)n
+ . . . .

This leads to

Ef = f(x+ 1) = f(x) + f ′(x) +
1

2
f ′′(x) + . . .+

1

n!
f (n)(x) + . . . ,

which is indeed the Taylor series for f(x+ 1) centered at f(x).
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