18.312: Algebraic Combinatorics

Lionel Levine

Lecture 6

Lecture date: Feb 17, 2011

Notes by: Dennis Tseng

1 Reprise of $\frac{d}{dx} = \ln(E)$

Let E denote the shift operator, such that for a sequence of numbers s_0, s_1, s_2, \ldots

$$E(s_0, s_1, s_2, \ldots) = (s_1, s_2, s_3, \ldots).$$

In the previous lecture, we mentioned the equation

$$E = e^{\frac{d}{dx}}.$$

Also, as mentioned in the last lecture, we can also have E operate on functions. If f is a function, then let

$$(Ef)(x) = f(x+1).$$

We can also define E^h to be

$$(E^h f)(x) = f(x+h),$$

where h is any real number.

To better understand the equation $E = d^{\frac{d}{dx}}$, we recall the Taylor expansion of e^x .

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \dots + \frac{t^{n}}{n!} + \dots$$

In a similar way, we can think of $e^{t\frac{d}{dx}}$ as

$$e^{t\frac{d}{dx}} = 1 + t\frac{d}{dx} + \frac{t^2\left(\frac{d}{dx}\right)^2}{2} + \dots + \frac{t^n\left(\frac{d}{dx}\right)^n}{n!} + \dots$$
 (1)

In (1) above, multiplication of operators is the same as the composition of operators. In particular $\left(\frac{d}{dx}\right)^n = \frac{d^n}{dx^n}$. Now, given the definition (1), we can let $e^{t\frac{d}{dt}}$ operate on a function.

$$\left[e^{t\frac{d}{dx}}\right](f) = f + tf' + \frac{t^2}{2}f'' + \dots + \frac{t^n}{n!}f^{(n)} + \dots$$

Now, if we plug in x = 0, we get

$$f(0) + tf'(0) + \frac{t^2}{2}f''(0) + \dots + \frac{t^n}{n!}f^{(n)}(0) + \dots,$$

which is the Taylor series for f(t), so we can write $\left[e^{t\frac{d}{dx}}\right]$ at x=0 as f(t). We can also write f(t) by using the shift operator, where $\left[E^t f\right](0)=f(t)$. Therefore, $\left[E^t f\right](0)=f(t)=\left[e^{t\frac{d}{dx}}f\right](0)$, and $E^t=e^{t\frac{d}{dx}}$. When we plug t=1, as get $E=e^{t\frac{d}{dx}}$, as desired.

1.1 Eigenvectors and eigenvalues of E

If we look at how E operators on sequences, if the sequence s_0, s_1, s_2, \ldots is an eigenvector of E with eigenvalue ϕ , then

$$E(s_0, s_1, s_2, \ldots) = (\phi s_0, \phi s_1, \phi s_2, \ldots)$$
$$(s_1, s_2, s_3, \ldots) = (\phi s_0, \phi s_1, \phi s_2, \ldots).$$

Therefore, $s_{n+1} = \phi s_n$ for all $n \ge 0$, and $s_n = s_0 \phi^n$ for all nonnegative integer n and nonzero s_0 .

Also, using methods learned in a differential equations class, we can show that the eigenvectors of $\frac{d}{dx}$ with eigenvalue λ are functions in the form $f(x) = ce^{\lambda x}$ for some constant $c \neq 0$.

These eigenvectors are essentially the same thing as $s_n = s_0 \phi^n = s_0 e^{\lambda n}$, where $\lambda = \ln(\phi)$. Therefore, if s is the sequence (s_0, s_1, \ldots) , $Es = \phi s = e^{\lambda} s$ and $\frac{d}{dx} f = \lambda f$.

The operators E and $\frac{d}{dx}$ have the same eigenvectors $ce^{\lambda x}$ but different eigenvalues. We see that $ce^{\lambda x}$ has eigenvalue λ for $\frac{d}{dx}$ and eigenvalue e^{λ} for E.

2 Linear Recurrence Sequences

From previous lectures, we have shown that the following conditions for sequences that satisfy linear recurrences are equivalent. We say that $\{s_n\}_{n\geq 0}$ satisfies a linear recurrence of order k if any of the follow is true:

1. There exists constants $a_0, \ldots, a_{k-1} \in \mathbb{C}$ such that

$$s_{n+k} = \sum_{i=0}^{k-1} a_i s_{n+i}$$

for all $n \ge 0$. An example of this is $s_{n+3} = 2s_{n+2} - 5s_{n+1} + s_n$.

2. The terms of the sequences can be expressed as

$$s_n = \sum_{i=1}^m q_i(n)\phi_i^n,$$

where ϕ_1, \ldots, ϕ_m are constants in $\mathbb{C}, q_1(x), q_2(x), \ldots, q_m(x)$ are polynomials over the complex numbers (in $\mathbb{C}[x]$), and $\sum_{i=1}^m \deg(q_i) = k$.

3. The exponential generating function

$$\mathcal{F}(x) = \sum_{n>0} s_n \frac{x^n}{n!}$$

satisfies a linear differential equation of order k. This is true because you shift the series when you differentiate.

We will present a couple more equivalent conditions:

4. The ordinary generating function

$$F_s(x) = \sum_{n>0} s_n x^n$$

is $\frac{P(x)}{Q(x)}$ for some polynomials $P(x), Q(x) \in \mathbb{C}[x]$ such that $\deg(P) < \deg(Q) \le k$.

5. We can express the terms of the sequence as

$$s_n = v^t A^n w$$

for some k by k matrix $A = (a_{ij})_{i,j=1}^k$ and some vectors v and w.

2.1 Proof of condition 4

We will prove the fourth condition is equivalent to the first condition. If $F_s(x) = \frac{P(x)}{Q(x)}$, where $Q(x) = \sum_{i=0}^{k} a_i x^i$, we get

$$F_s(x) = \frac{P(x)}{Q(x)}$$
$$Q(x)F_s(x) = P(x)$$
$$\left(\sum_{i=0}^k a_i x^i\right) \left(\sum_{n\geq 0} s_n x^n\right) = P(x).$$

After expanding we get

$$\sum_{m \ge 0} \left(\sum_{i+n=m} a_i s_n \right) x^m = P(x).$$

Now, equate coefficients of x^m . If $m \ge k$, then the coefficient of x^k on the right side is 0, since P(x) must have degree less than k. So if $m \ge k$,

$$\sum_{i+n=m}^{k} a_i s_n = 0$$

$$\sum_{i=0}^{k} a_i s_{m-i} = 0.$$
(2)

The equation (2) is a linear recurrence of order k. In the equation $F_s(x) = \frac{P(x)}{Q(x)}$, Q(x) encodes the coefficients of the recurrence and P(x) encodes the initial conditions.

2.2 Proof of condition 5

We will prove fifth condition also defines a sequence that satisfies a linear recurrence of order k. To do this, we will use the Cayley Hamilton Theorem:

Theorem 1 Let A be a square matrix. If $\chi_A(x) = \det(xI - A)$ is the characteristic polynomial of A, then $\chi_A(A) = 0$.

To show that the fifth definition also defines a sequence that satisfies a linear recurrence of order k, we first show that if the n^{th} term of the sequence can be expressed as $v^t A^n w$ for a k by k matrix A and vectors v and w. Let the characteristic polynomial $\chi_A(x)$ be $\sum_{i=0}^k c_i x^i$. Then, for any nonnegative integer n,

$$\sum_{i=0}^{k} c_i s_{n+i} = \sum_{i=0}^{k} c_i v^t A^{n+i} w$$

$$= v^t \left(\sum_{i=0}^{k} c_i A^{n+i} \right) w$$

$$= v^t \left[A^n \sum_{i=0}^{k} c_i A^i \right] w$$

$$= v^t \left[A^n \chi_A(A) \right] w$$

$$= v^t \left[A^n 0 \right] w$$

$$= 0.$$

One direction is proven. How we need to show that we can represent any linear recurrence in this form.

Given S_n satisfying a linear recurrence

$$\sum_{i=0}^{k} c_i s_{n+i} = 0$$

for all nonnegative integer n and $c_k = 1$, we want to find a matrix A such that its characteristic polynomial is

$$\chi_A(x) = \sum_{i=0}^k c_i x^i.$$

One method is to factor χ_A into $\prod_{i=1}^k x - \phi_i$, where ϕ_i are the roots of χ_A with multiplicity. Then, let

$$A = \begin{bmatrix} \phi_1 & 0 & \cdots & 0 \\ 0 & \phi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \phi_k \end{bmatrix}.$$

We could also create an integer matrix if c_i are integers for all $0 \le i \le k$. Let A be the matrix

$$A = \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -c_0 & -c_1 & \cdots & -c_{k-2} & c_{k-1} \end{bmatrix},$$

where A has 1's on the superdiagonal, -1 times the coefficients of χ_A in the last row, and 0's everywhere else. Then,

$$A \begin{bmatrix} s_n \\ s_{n+1} \\ \vdots \\ s_{n+k-1} \end{bmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -c_0 & -c_1 & \cdots & -c_{k-2} & c_{k-1} \end{bmatrix} \begin{bmatrix} s_n \\ s_{n+1} \\ \vdots \\ s_{n+k-1} \end{bmatrix}$$
$$= \begin{bmatrix} s_{n+1} \\ s_{n+2} \\ \vdots \\ s_{n+k-1} \\ -s_n c_0 - s_{n+1} c_1 + \cdots - s_{n+k-1} c_{k-1} \end{bmatrix}.$$

Since
$$\sum_{i=0}^{k} c_i s_{n+i} = 0$$
, with $c_k = 1$,

$$\begin{bmatrix} s_{n+1} \\ s_{n+2} \\ \vdots \\ s_{n+k-1} \\ -s_n c_0 - s_{n+1} c_1 + \dots - s_{n+k-1} c_{k-1} \end{bmatrix} = \begin{bmatrix} s_{n+1} \\ s_{n+2} \\ \vdots \\ s_{n+k} \end{bmatrix}.$$

Now, let

$$w = \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{k-1} \end{bmatrix}, v = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Then,

$$v^{t}A^{n}w = v^{t} \begin{bmatrix} s_{n} \\ s_{n+1} \\ \vdots \\ s_{n+k-1} \end{bmatrix}$$
$$= s_{n}.$$

2.3 Example of a recurrence problem

Example 2 How many non-self-intersection paths start at the origin in \mathbb{Z}^2 with a total of n steps, where all the steps are either up, left, or right?

One example of such a path with 6 steps starts at (0,0) and traverses (1,0), (2,0), (2,1), (3,1), (3,2), (2,2) in order.

We can encode these paths by words with the letters N, E, and W, where N denotes traveling one unit up, E denotes traveling one unit to the right, and W denotes traveling one unit to the left. The path in the example is given by the word EENENW. Since the path must be non-self-intersecting, we are forbidden to have EW or WE as consecutive letters.

Let f(n) be the number of paths with n steps, or the number of words of length n containing the letters N, E, and W without having EW or WE as consecutive letters. If n is at least 2,

there are 7 possibilities for the last 2 letters of such a word: EN, WN, NN, EE, NE, WW, or NW. The number of words of length n that end in EN, WN, or NN is f(n-1), since there is no restriction on what can come before N. Similarly, the number of words that can end in NW is f(n-2).

Now we claim that the number of words that can end in WW, EE, or NE is f(n-1). Given any valid word with length n-1, it ends with either an E, N or W. If it ends with E, append an E. If it ends with an N, append an E. If it ends in a W, append an W. Therefore, we have found a bijection between the words with length n-1 and the words of length n that end with WW, EE, or NE. Therefore, we know f(n) = 2f(n-1) + f(n-2). Solving, we get

$$f(n) = 2f(n-1) + f(n-2)$$

$$f(n) - 2f(n-1) - f(n-2) = 0$$

$$(E^2 - 2E - 1)f = 0$$

$$(E - (1 + \sqrt{2}))(E - (1 - \sqrt{2}))f = 0.$$

Therefore, $f(n) = a(1+\sqrt{2})^n + b(1-\sqrt{2})^n$ for some constants a and b. We know that f(0) = 1, since the word of no letters has length 0, and f(1) = 3. Solving for a and b from these initial conditions yields $a = \frac{1+\sqrt{2}}{2}$ and $b = \frac{1-\sqrt{2}}{2}$. Therefore, we have

$$f(n) = \frac{1+\sqrt{2}}{2}(1+\sqrt{2})^n + \frac{1-\sqrt{2}}{2}(1-\sqrt{2})^n,$$

for all nonnegative integers n.