18.312: Algebraic Combinatorics Lionel Levine

Lecture 6
Lecture date: Feb 17, 2011 Notes by: Dennis Tseng

1 Reprise of - = In(E)

Let E denote the shift operator, such that for a sequence of numbers sg, s1, so,.. .,
E(so,s1,82,...) = (81,52, 83,.-.).
In the previous lecture, we mentioned the equation
E = e%.
Also, as mentioned in the last lecture, we can also have F operate on functions. If f is a
function, then let

(Ef)(x) = f(z+1).
We can also define E" to be
(E"f)(x) = f(z + h),

where h is any real number.

To better understand the equation F = d%, we recall the Taylor expansion of e”.

t2 tn
t
e=14+t+—=+--+—=4--
2 n!
In a similar way, we can think of el as
2 (d\?2 n (. d\"
td d (%) t" (4z)
+ dx + 2 * n! (1)
In (1) above, multiplication of operators is the same as the composition of operators. In
particular (%)n = (j‘fc—nn. Now, given the definition (1), we can let et operate on a function.

t2 t"
[et%} (f) :f+tf’+§f”+...+af(")+...
Now, if we plug in x = 0, we get
FO) +4£/(0) + 5 S(0) -+ G FO0) + -,
which is the Taylor series for f(t), so we can write [et%} at x = 0 as f(t). We can also write

f(t) by using the shift operator, where [E'f] (0) = f(t). Therefore, [E'f] (0) = f(t) =
[et%f} (0), and E' = el . When we plugt =1, as get £ = e%, as desired.
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1.1 Eigenvectors and eigenvalues of F£

If we look at how E operators on sequences, if the sequence sq, s1, So, ... is an eigenvector
of E with eigenvalue ¢, then

E(s0, 81,82, ...) = (¢50, ps1, P52, . ..)
(317327837 e ) = (¢807¢517¢327 B )

Therefore, sp41 = ¢s, for all n > 0, and s, = sp¢" for all nonnegative integer n and
nonzero Sg.

Also, using methods learned in a differential equations class, we can show that the eigen-
vectors of % with eigenvalue A are functions in the form f(z) = ce’® for some constant

c#0.

These eigenvectors are essentially the same thing as s, = so¢™ = s0e’", where A = In(¢).
Therefore, if s is the sequence (s, 51,...), Es = ¢s = e*s and %f =M.

The operators E and % have the same eigenvectors ce’® but different eigenvalues. We see
that ce’® has eigenvalue \ for % and eigenvalue e for E.

2 Linear Recurrence Sequences

From previous lectures, we have shown that the following conditions for sequences that
satisfy linear recurrences are equivalent. We say that {s,},>0 satisfies a linear recurrence
of order k if any of the follow is true:

1. There exists constants ag,...,ar—1 € C such that

k—1
Sn+k = § AiSn+iq
=0

for all n > 0. An example of this is ;43 = 2842 — 5811 + Sn-

2. The terms of the sequences can be expressed as

m
5n = ai(n)o?,
i=1
where ¢1, ..., ¢, are constants in C,q1(x), g2(x), ..., ¢n(x) are polynomials over the

complex numbers (in Clz]), and Zdeg(qi) = k.

i=1
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3. The exponential generating function
.,I/,TL
F(z) = Z snﬁ
n>0
satisfies a linear differential equation of order k. This is true because you shift the
series when you differentiate.

We will present a couple more equivalent conditions:

4. The ordinary generating function

Fs(z) = Z Spa”

n>0

is % for some polynomials P(z), Q(z) € C[z] such that deg(P) < deg(Q) < k.
5. We can express the terms of the sequence as

s, = vt AMw

for some k by k matrix A = (aij)ﬁjzl and some vectors v and w.

2.1 Proof of condition 4

We will prove the fourth condition is equivalent to the first condition. If Fys(z) = ggg,

k
where Q(x) = Zaixi, we get
=0

P(z)
P = 0
Q(z)Fs(z) = P(z)
k
<Z aiazi> Z spx” | = P(x)
=0 n>0

After expanding we get

> < > aisn) 2™ = P(x).

m>0 \i4+n=m

6-3



Now, equate coefficients of ™. If m > k, then the coefficient of z¥ on the right side is 0,
since P(z) must have degree less than k. So if m > k,

Z a;iSm—; = 0. (2)

The equation (2) is a linear recurrence of order k. In the equation Fy(z) = ggg, Q(x)

encodes the coefficients of the recurrence and P(x) encodes the initial conditions.

2.2 Proof of condition 5

We will prove fifth condition also defines a sequence that satisfies a linear recurrence of
order k. To do this, we will use the Cayley Hamilton Theorem:

Theorem 1 Let A be a square matriz. If xa(x) = det(zI — A) is the characteristic poly-
nomial of A, then xa(A) = 0.

To show that the fifth definition also defines a sequence that satisfies a linear recurrence of

order k, we first show that if the n'* term of the sequence can be expressed as v'A"w for a
k

k by k matrix A and vectors v and w. Let the characteristic polynomial x 4(z) be Z et
i=0
Then, for any nonnegative integer n,

k k

E cisn+i:§ c;vt A

1=0 1=0

One direction is proven. How we need to show that we can represent any linear recurrence
in this form.
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Given S, satisfying a linear recurrence

k
E CiSn+i — 0
=0

for all nonnegative integer n and ¢y = 1, we want to find a matrix A such that its charac-
teristic polynomial is

k
xa(z) = chxz
i=0
k
One method is to factor y 4 into H:p — ¢;, where ¢; are the roots of x4 with multiplicity.
i=1
Then, let
$ 0 - 0
0 ¢ -+ 0
A=\ . . . :
0 0 o]

We could also create an integer matrix if ¢; are integers for all 0 < ¢ < k. Let A be the
matrix

0 1 - 0 0
0 o .- 0 0
A= : :
0 0 0 1
|—C0 —C1 —Cp—2 Cg—1|

where A has 1’s on the superdiagonal, -1 times the coefficients of x4 in the last row, and
0’s everywhere else. Then,

s [0 1 0 0 1 s
s " 0 0 0 s "
n+1 n+1
A = L
s 0 0 0 1 <
n+k—1 [ —— n+k—1
Sn+1
Sn+2
Sn+k—1
| —SnC0 — Sn+1C1 + *** — Sp4k—1Ck—1 |
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k
Since ZCiSnJFi =0, with ¢ =1,

i=0
[ Sn+1 1
Sn+1
Sn42
. Sn+2
Sn+k—1
Sn+k
| —SnC0 — Sp+1€C1 + - — Sp4k—1Ck—1 |
Now, let
S0 1
s1 0
w = o l,v=1|.].
Sk—1 0
Then,
STL
Sn+1
vt AMw = ot .
Sn+k—1

= Sp.

2.3 Example of a recurrence problem

Example 2 How many non-self-intersection paths start at the origin in Z? with a total of
n steps, where all the steps are either up, left, or right?

One example of such a path with 6 steps starts at (0,0) and traverses (1,0), (2,0), (2,1),
(3,1), (3,2), (2,2) in order.

We can encode these paths by words with the letters N, E, and W, where N denotes
traveling one unit up, £ denotes traveling one unit to the right, and W denotes traveling
one unit to the left. The path in the example is given by the word FENENW . Since the
path must be non-self-intersecting, we are forbidden to have EW or W E as consecutive
letters.

Let f(n) be the number of paths with n steps, or the number of words of length n containing
the letters N, E/, and W without having EW or W E as consecutive letters. If n is at least 2,
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there are 7 possibilities for the last 2 letters of such a word: EN,WN, NN, EE,NE,WW,
or NW. The number of words of length n that end in EN, WN, or NN is f(n — 1), since

there is no restriction on what can come before N. Similarly, the number of words that can
end in NW is f(n — 2).

Now we claim that the number of words that can end in WW, EE, or NE is f(n — 1).
Given any valid word with length n — 1, it ends with either an E, N or W. If it ends with
E, append an F. If it ends with an N, append an E. If it ends in a W, append an W.
Therefore, we have found a bijection between the words with length n — 1 and the words of
length n that end with WW, EE, or NE. Therefore, we know f(n) =2f(n—1)+ f(n—2).
Solving, we get

fn)=2f(n—-1)+ f(n—-2)
fn) =2f(n—=1) = f(n-2)=0
(B> -2E—-1)f=0
(E—(1+V2)(E-(1-v2)f=0.

Therefore, f(n) = a(l 4+ v/2)" + b(1 — v/2)" for some constants a and b. We know that
f(0) =1, since the word of no letters has length 0, and f(1) = 3. Solving for a and b from

these initial conditions yields a = 1+72\/§ and b = 137@ Therefore, we have

fo =220 vap + L2 - vy

for all nonnegative integers n.
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