
18.312: Algebraic Combinatorics Lionel Levine

Lecture 6

Lecture date: Feb 17, 2011 Notes by: Dennis Tseng

1 Reprise of d
dx = ln(E)

Let E denote the shift operator, such that for a sequence of numbers s0, s1, s2, . . .,

E(s0, s1, s2, . . .) = (s1, s2, s3, . . .).

In the previous lecture, we mentioned the equation

E = e
d
dx .

Also, as mentioned in the last lecture, we can also have E operate on functions. If f is a
function, then let

(Ef)(x) = f(x+ 1).

We can also define Eh to be
(Ehf)(x) = f(x+ h),

where h is any real number.

To better understand the equation E = d
d
dx , we recall the Taylor expansion of ex.

et = 1 + t+
t2

2
+ · · ·+ tn

n!
+ · · ·

In a similar way, we can think of et
d
dx as

et
d
dx = 1 + t

d

dx
+
t2
(
d
dx

)2
2

+ · · ·+
tn
(
d
dx

)n
n!

+ · · · (1)

In (1) above, multiplication of operators is the same as the composition of operators. In

particular
(
d
dx

)n
= dn

dxn . Now, given the definition (1), we can let et
d
dt operate on a function.[

et
d
dx

]
(f) = f + tf ′ +

t2

2
f ′′ + · · ·+ tn

n!
f (n) + · · ·

Now, if we plug in x = 0, we get

f(0) + tf ′(0) + t2

2 f
′′(0) + · · ·+ tn

n!f
(n)(0) + · · · ,

which is the Taylor series for f(t), so we can write
[
et

d
dx

]
at x = 0 as f(t). We can also write

f(t) by using the shift operator, where
[
Etf

]
(0) = f(t). Therefore,

[
Etf

]
(0) = f(t) =[

et
d
dx f
]

(0), and Et = et
d
dx . When we plug t = 1, as get E = e

d
dx , as desired.
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1.1 Eigenvectors and eigenvalues of E

If we look at how E operators on sequences, if the sequence s0, s1, s2, . . . is an eigenvector
of E with eigenvalue φ, then

E(s0, s1, s2, . . .) = (φs0, φs1, φs2, . . .)

(s1, s2, s3, . . .) = (φs0, φs1, φs2, . . .).

Therefore, sn+1 = φsn for all n ≥ 0, and sn = s0φ
n for all nonnegative integer n and

nonzero s0.

Also, using methods learned in a differential equations class, we can show that the eigen-
vectors of d

dx with eigenvalue λ are functions in the form f(x) = ceλx for some constant
c 6= 0.

These eigenvectors are essentially the same thing as sn = s0φ
n = s0e

λn, where λ = ln(φ).
Therefore, if s is the sequence (s0, s1, . . .), Es = φs = eλs and d

dxf = λf .

The operators E and d
dx have the same eigenvectors ceλx but different eigenvalues. We see

that ceλx has eigenvalue λ for d
dx and eigenvalue eλ for E.

2 Linear Recurrence Sequences

From previous lectures, we have shown that the following conditions for sequences that
satisfy linear recurrences are equivalent. We say that {sn}n≥0 satisfies a linear recurrence
of order k if any of the follow is true:

1. There exists constants a0, . . . , ak−1 ∈ C such that

sn+k =
k−1∑
i=0

aisn+i

for all n ≥ 0. An example of this is sn+3 = 2sn+2 − 5sn+1 + sn.

2. The terms of the sequences can be expressed as

sn =

m∑
i=1

qi(n)φni ,

where φ1, . . . , φm are constants in C,q1(x), q2(x), . . . , qm(x) are polynomials over the

complex numbers (in C[x]), and

m∑
i=1

deg(qi) = k.
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3. The exponential generating function

F(x) =
∑
n≥0

sn
xn

n!

satisfies a linear differential equation of order k. This is true because you shift the
series when you differentiate.

We will present a couple more equivalent conditions:

4. The ordinary generating function

Fs(x) =
∑
n≥0

snx
n

is P (x)
Q(x) for some polynomials P (x), Q(x) ∈ C[x] such that deg(P ) < deg(Q) ≤ k.

5. We can express the terms of the sequence as

sn = vtAnw

for some k by k matrix A = (aij)
k
i,j=1 and some vectors v and w.

2.1 Proof of condition 4

We will prove the fourth condition is equivalent to the first condition. If Fs(x) = P (x)
Q(x) ,

where Q(x) =
k∑
i=0

aix
i, we get

Fs(x) =
P (x)

Q(x)

Q(x)Fs(x) = P (x)(
k∑
i=0

aix
i

)∑
n≥0

snx
n

 = P (x).

After expanding we get ∑
m≥0

( ∑
i+n=m

aisn

)
xm = P (x).
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Now, equate coefficients of xm. If m ≥ k, then the coefficient of xk on the right side is 0,
since P (x) must have degree less than k. So if m ≥ k,∑

i+n=m

aisn = 0

k∑
i=0

aism−i = 0. (2)

The equation (2) is a linear recurrence of order k. In the equation Fs(x) = P (x)
Q(x) , Q(x)

encodes the coefficients of the recurrence and P (x) encodes the initial conditions.

2.2 Proof of condition 5

We will prove fifth condition also defines a sequence that satisfies a linear recurrence of
order k. To do this, we will use the Cayley Hamilton Theorem:

Theorem 1 Let A be a square matrix. If χA(x) = det(xI − A) is the characteristic poly-
nomial of A, then χA(A) = 0.

To show that the fifth definition also defines a sequence that satisfies a linear recurrence of
order k, we first show that if the nth term of the sequence can be expressed as vtAnw for a

k by k matrix A and vectors v and w. Let the characteristic polynomial χA(x) be
k∑
i=0

cix
i.

Then, for any nonnegative integer n,

k∑
i=0

cisn+i =
k∑
i=0

civ
tAn+iw

= vt

(
k∑
i=0

ciA
n+i

)
w

= vt

[
An

k∑
i=0

ciA
i

]
w

= vt [AnχA(A)]w

= vt [An0]w

= 0.

One direction is proven. How we need to show that we can represent any linear recurrence
in this form.
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Given Sn satisfying a linear recurrence

k∑
i=0

cisn+i = 0

for all nonnegative integer n and ck = 1, we want to find a matrix A such that its charac-
teristic polynomial is

χA(x) =

k∑
i=0

cix
i.

One method is to factor χA into

k∏
i=1

x− φi, where φi are the roots of χA with multiplicity.

Then, let

A =


φ1 0 · · · 0
0 φ2 · · · 0
...

...
. . .

...
0 0 · · · φk

 .
We could also create an integer matrix if ci are integers for all 0 ≤ i ≤ k. Let A be the
matrix

A =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−c0 −c1 · · · −ck−2 ck−1

 ,

where A has 1’s on the superdiagonal, -1 times the coefficients of χA in the last row, and
0’s everywhere else. Then,

A


sn
sn+1

...
sn+k−1

 =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−c0 −c1 · · · −ck−2 ck−1




sn
sn+1

...
sn+k−1



=


sn+1

sn+2
...

sn+k−1
−snc0 − sn+1c1 + · · · − sn+k−1ck−1

 .

6-5



Since
k∑
i=0

cisn+i = 0, with ck = 1,


sn+1

sn+2
...

sn+k−1
−snc0 − sn+1c1 + · · · − sn+k−1ck−1

 =


sn+1

sn+2
...

sn+k

 .

Now, let

w =


s0
s1
...

sk−1

, v =


1
0
...
0

.

Then,

vtAnw = vt


sn
sn+1

...
sn+k−1


= sn.

2.3 Example of a recurrence problem

Example 2 How many non-self-intersection paths start at the origin in Z2 with a total of
n steps, where all the steps are either up, left, or right?

One example of such a path with 6 steps starts at (0,0) and traverses (1,0), (2,0), (2,1),
(3,1), (3,2), (2,2) in order.

We can encode these paths by words with the letters N , E, and W , where N denotes
traveling one unit up, E denotes traveling one unit to the right, and W denotes traveling
one unit to the left. The path in the example is given by the word EENENW . Since the
path must be non-self-intersecting, we are forbidden to have EW or WE as consecutive
letters.

Let f(n) be the number of paths with n steps, or the number of words of length n containing
the letters N , E, and W without having EW or WE as consecutive letters. If n is at least 2,
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there are 7 possibilities for the last 2 letters of such a word: EN,WN,NN,EE,NE,WW ,
or NW . The number of words of length n that end in EN,WN, or NN is f(n− 1), since
there is no restriction on what can come before N . Similarly, the number of words that can
end in NW is f(n− 2).

Now we claim that the number of words that can end in WW , EE, or NE is f(n − 1).
Given any valid word with length n− 1, it ends with either an E, N or W . If it ends with
E, append an E. If it ends with an N , append an E. If it ends in a W , append an W .
Therefore, we have found a bijection between the words with length n− 1 and the words of
length n that end with WW , EE, or NE. Therefore, we know f(n) = 2f(n−1)+f(n−2).
Solving, we get

f(n) = 2f(n− 1) + f(n− 2)

f(n)− 2f(n− 1)− f(n− 2) = 0

(E2 − 2E − 1)f = 0

(E − (1 +
√

2))(E − (1−
√

2))f = 0.

Therefore, f(n) = a(1 +
√

2)n + b(1 −
√

2)n for some constants a and b. We know that
f(0) = 1, since the word of no letters has length 0, and f(1) = 3. Solving for a and b from

these initial conditions yields a = 1+
√
2

2 and b = 1−
√
2

2 . Therefore, we have

f(n) =
1 +
√

2

2
(1 +

√
2)n +

1−
√

2

2
(1−

√
2)n,

for all nonnegative integers n.

6-7


