18.312: Algebraic Combinatorics

Lionel Levine

Lecture 8

Lecture date: March 1, 2011

Notes by: Christopher Policastro

Remark: In the last lecture, someone asked whether all posets could be constructed from a point using the operations of disjoint union, ordinal sum, cartesian product and exponentiation. This is not possible in general. Consider the poset $\mathbf{N} := \{a, b, c, d\}$ with Hasse diagram:

We can see that this poset is not representable as P+Q, $P\oplus Q$, $P\times Q$, or P^Q for any posets P and Q.

The class of posets that can be constructed using disjoint union and ordinal sum are called $series\ parallel\ posets$. In exercise 3.13 of Stanley, it is shown that a poset is series parallel iff its Hasse diagram does not contain \mathbf{N} as a subdiagram.

Lattices

Recall from last lecture the definition of a lattice:

Definition 1 A poset L is a **lattice** if every pair of elements x, y has

- (i) a least upper bound $x \vee y$ (called join), and
- (ii) a greatest lower bound $x \wedge y$ (called meet);

that is

$$z \ge x \lor y \iff z \ge x \text{ and } z \ge y$$

 $z \le x \land y \iff z \le x \text{ and } z \le y.$

For a later result, we will need the following definition.

Definition 2 An element z of a lattice L is called **join irreducible** if $z \neq z_1 \lor z_2$ for $z_1, z_2 < z$.

Observe that the meet and join operations are associative; we note that for meet

$$w \le (x \land y) \land z \Leftrightarrow w \le z, x \land y \Leftrightarrow w \le x, y, z$$
$$\Leftrightarrow w \le x, y \land z \Leftrightarrow w \le x \land (y \land z)$$

and similarly for join

$$w \ge (x \lor y) \lor z \Leftrightarrow w \ge z, x \lor y \Leftrightarrow w \ge x, y, z$$
$$\Leftrightarrow w \ge x, y \lor z \Leftrightarrow w \ge x \lor (y \lor z).$$

Moreover observe that if L is finite, then L has a unique **minimal element** $\hat{0} := \bigwedge_{x \in L} x$ and unique **maximal element** $\hat{1} := \bigvee_{x \in L} x$. By definition

$$\hat{0} \lor x = x, \quad \hat{0} \land x = \hat{0},$$

and

$$\hat{1} \lor x = \hat{1}, \quad \hat{1} \land x = x.$$

We might want to show that a poset is a lattice, but only know about one operation. The following lemma tells us that sometimes this is enough.

Lemma 3 If P is a finite poset such that

- (i) Every $x, y \in P$ have a greatest lower bound.
- (ii) P has a unique maximal element 1.

then P is a lattice.

Proof: Consider $x, y \in P$. Let $S = \{z \in P : z \ge x, y\}$. Note that $S \ne \emptyset$ since $\hat{1} \in S$. Take $x \lor y := \bigwedge_{z \in S} z$. We see that

$$z \ge x, y \quad \forall z \in S \Longrightarrow x \lor y \ge x, y,$$

and

$$w \geq x, y \Longrightarrow w \in S \Longrightarrow w \geq \bigwedge_{z \in S} z = x \vee y.$$

This shows that P admits a join operation. \square

Notice that by an analogous argument, the same conclusion would follow from the existence of least upper bounds and a unique minimal element. However the meet operation can oftentimes be more natural than the join operation. We will see this in Example 6.

Examples of Lattices

Example 4 (n) Recall that n (handwritten \underline{n}) is the set [n] with the usual order relations. We see that $i \wedge j = \min(i, j)$ and $i \vee j = \max(i, j)$.

Example 5 (Boolean algebras) Recall that $B_n = \mathcal{P}([n])$. It is a lattice with meet $S \wedge T = S \cap T$, and join $S \vee T = S \cup T$. This example reinforces our notation.

Example 6 (Partitions) Let $\pi_n = \{partitions \ of \ [n]\}$ ordered by refinement. Given partitions $\sigma = (\sigma_1, \dots, \sigma_k)$ and $\tau = (\tau_1, \dots, \tau_l)$ define $\sigma \wedge \tau$ as

(nonempty intersections
$$\sigma_i \cap \tau_j : 1 \leq i \leq k, 1 \leq j \leq l$$
).

Since [n] is the unique maximal element of π_n , Lemma 3 implies that π_n is a lattice. Showing that π_n is a lattice without Lemma 3 would be more difficult because the join of two partitions has a messy formula.

Example 7 (Vector Spaces) Let V be a vector space, and L be the set of linear subspaces ordered by inclusion. L is lattice with meet $S \wedge T = S \cap T$, and join $S \vee T = S + T = \{v + w : v \in S, w \in T\}$.

Example 8 (Groups) Let G be a group, and L be the set of subgroups ordered by inclusion. L is a lattice with meet $H \wedge K = H \cap K$, and join $H \vee K = \langle H, K \rangle$.

Note that Examples 7 and 8 are two cases of lattice constructions common to any algebraic object.

Example 9 (Order-preserving maps) Let P be a poset, and L be a lattice. Recall that $L^P = \{ order \ preserving \ maps \ P \to L \}$. L^P is a lattice with join

$$(f \wedge g): P \ni x \mapsto f(x) \wedge g(x) \in L,$$

and meet

$$(f \lor g) : P \ni x \mapsto f(x) \lor g(x) \in L.$$

Distributive Lattices

In this lecture, we will focus on lattices with a certain property that makes them similar to Boolean algebras. The structure of these lattices is sufficiently nice to allow for a classification theorem (cf. Theorem 15).

Definition 10 A lattice L is **distributive** if the meet and join operations distribute over each other i.e. for $x, y, z \in L$

(i)
$$(x \lor y) \land z = (x \land z) \lor (y \land z)$$

(ii)
$$(x \wedge y) \vee z = (x \vee z) \wedge (y \vee z)$$
.

Notice that a Boolean algebra is distributive since union and intersection distribute over each other.

Definition 11 Given a poset P, an **order ideal** of P is a subset $I \subset P$ such that for all $x \in I$, if $y \le x$, then $y \in I$.

Consider for instance the following order ideal of B_3 expressed in terms of it Hasse diagram:

Figure 1: Order ideal of B_3

We will denote the set of order ideals as J(P). Note that J(P) is a poset under inclusion. We will call an order ideal $I \subset P$ **principal** if it is of the form $I = \langle x \rangle := \{ y \in P : y \leq_P x \}$ for some $x \in P$.

Example 12 (Boolean algebras) Let $+_n \mathbf{1} = \mathbf{1} + \ldots + \mathbf{1}$ be the disjoint union of n copies of $\mathbf{1}$. Since $+_n \mathbf{1}$ has no order relations, this means that every subset is an order ideal. So $J(+_n \mathbf{1}) = B_n$.

Example 13 (n) Note that every order ideal of n is of the form $\langle b \rangle$ for some $b \in n$. Since $a \leq b$ iff $\langle a \rangle \subset \langle b \rangle$, this means that $J(n) \simeq n+1$.

Example 14 (N) Consider $N = \{a, b, c, d\}$ defined at the beginning of lecture. We have $J(N) = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}, \{b, d\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b\}\}.$

This gives the following Hasse diagram:

Figure 2: $J(\mathbf{N})$

Note that if $I_1, I_2 \subset P$ are order ideals, then $I_1 \cap I_2$ and $I_1 \cup I_2$ are order ideals. Since unions and intersections distribute over each other, this means that J(P) is a distributive lattice for any poset P. The following result tells us that if a distributive lattice is finite, then it must be of this form.

Theorem 15 (Birkoff's Theorem) ¹ Let L be a finite distributive lattice. There exists a poset P unique up to isomorphism such that $L \simeq J(P)$.

Proof: [Uniqueness] Given J(P) we want to recover P. The subset of principal order ideals is a copy of P sitting inside J(P). However, we want to describe this subset intrinsically without reference to P.

<u>Fact</u> 1. Let $S \subset J(P)$ be the subset of join irreducible elements. $S \simeq P$:

Let $T \subset J(P)$ be the subset of principal order ideals. Note that $T \simeq P$, because $\langle x \rangle \subset \langle y \rangle$ iff $x \leq_P y$. So it is enough to show that S = T.

 $(T \subset S)$: Suppose that $\langle x \rangle = I_1 \cup I_2$ for $I_1, I_2 \in J(P)$. This means that either $x \in I_1$ or $x \in I_2$. So $\langle x \rangle \subset I_1$ or $\langle x \rangle \subset I_2$, implying $\langle x \rangle = I_1$ or $\langle x \rangle = I_2$.

 $(S \subset T)$: Assume that $I \in J(P)$ is not principal. So we can find distinct maximal elements x and y in I. Note that $I - \{x\}$ and $I - \{y\}$ are order ideals. Since

$$I = (I - \{x\}) \cup (I - \{y\})$$

this implies that I is not join irreducible.

We can now show uniqueness. Suppose that $J(P) \simeq L \simeq J(Q)$ for posets P and Q. This implies that the join irreducible elements of J(P) and J(Q) are isomorphic. So by Fact 1, we conclude that $P \simeq Q$. \square

Proof: [Existence] From the proof of uniqueness, we have to show that L = J(P) for P the join irreducible elements of L.

¹This result is sometimes called the fundamental theorem of finite distributive lattices.

<u>Fact</u> 2. For $y \in L$ there exist $y_1, \ldots, y_n \in P$ such that $y = y_1 \vee \ldots \vee y_n$. For n minimal, this expression is unique up to permutation:

An element $y \in L$ is either join irreducible, or expressible as $y = y_1 \lor y_2$ for $y_1, y_2 < y$. Since L is finite, we see by induction that an element $y \in L$ can be written as $y = y_1 \lor \ldots \lor y_n$ for $y_i \in P$.

Choose n minimal with this property. Suppose that $y_1 \vee \ldots \vee y_n = y = z_1 \vee \ldots \vee z_n$ for $z_j, y_i \in P$. Note that $y \wedge z_i = z_i$ because $z_i \leq z_1 \vee \ldots \vee z_n = y$. By distributivity

$$z_i = z_i \wedge y = \bigvee_{j=1}^n z_i \wedge y_j.$$

Since $z_i \in P$, there exists some y_j such that $z_i = z_i \wedge y_j$. So $z_i \leq y_j$.

Suppose that $z_i, z_j \leq y_k$ for $i \neq j$. Since join is commutative and associative, we can assume w.l.o.g that i = 1 and j = 2. Replace $z_1 \vee z_2$ by y_k in $z_1 \vee \ldots \vee z_n$. So $y = y_k \vee (z_3 \vee \ldots \vee z_n)$ contradicting minimality of n. Therefore $\sigma \in S_n$.

Switching the roles of y_i and z_j , we obtain $\tau \in S_n$ such that $y_{\tau(i)} \leq z_{\sigma(i)} \leq y_i$. By minimality of n, we see that $y_{\tau(i)} = y_i$. This gives the result.

Define a map $f: J(P) \ni I \mapsto \bigvee_{x \in I} x \in L$. By Fact 2, f is surjective.

Define a map $g: L \ni y \mapsto \bigcup_{y_i} \langle y_i \rangle \in J(P)$ where $y = y_1 \vee \ldots \vee y_n$ as in Fact 2. Since union commutes, this map is well-defined by Fact 2. An order ideal $I \subset P$ can be expressed as $I = \bigcup_i \langle y_i \rangle$ for $\{y_1, \ldots y_n\} \subset P$ the maximal elements of I. Note that

$$g(y_1 \vee \ldots \vee y_n) = \bigcup_i \langle y_i \rangle = I$$

because n is minimal by maximality of the y_i . Therefore gf is the identity on J(P). This implies that f is injective.

(f order-preserving): Suppose that $I \subset I'$ for $I, I' \in J(P)$. We have

$$f(I') = \bigvee_{y \in I'} y = (\bigvee_{y \in I} y) \lor (\bigvee_{y \in I' - I} y)$$
$$= f(I) \lor z$$

for some $z \in L$. This implies that $f(I') \geq f(I)$.

(g order-preserving): Suppose that for $I, I' \in J(P)$, we have $\bigvee_{x \in I} x \leq \bigvee_{y \in I'} y$. We want to show that $I \subset I'$. Note

$$\bigvee_{x \in I} x \le \bigvee_{y \in I'} y \Longrightarrow x \le \bigvee_{y \in I'} y \quad \forall x \in I$$

$$\Longrightarrow x = x \land x = (\bigvee_{y \in I'} y) \land x$$

$$\Longrightarrow x = \bigvee_{y \in I'} (y \land x)$$

by distributivity. Since x is join irreducible, this implies that $x = y \land x$ for some $y \in I'$. So $x \le y$ for some $y \in I'$. This means that $x \in I'$ because I' is an order ideal. Hence $I \subset I'$.

Therefore $J(P) \xrightarrow{\sim} L$. \square

Note that we did not make full use of distributivity; we only needed to know that $(x \lor y) \land z = (x \land z) \lor (y \land z)$ for $x, y, z \in L$. Hence property (i) of Definition 10 implies property (ii). This is a convenient fact for showing that a lattice is distributive, because only property (i) of Definition 10 needs to be checked.

We will end this lecture with a proposition that gives us another way of thinking about order ideals that will be useful when we try to compare posets.

Definition 16 Given a poset P, define P^* to be the set P with reversed order relations i.e. $x \leq_P y$ iff $x \geq_{P^*} y$.

Proposition 17 $J(P) \simeq (2^P)^*$.

Proof: Given a map $f \in \mathbf{2}^P$, let $\varphi(f) = f^{-1}(1) \subset P$. Since f is order-preserving, this implies that $\varphi(f) \in J(P)$. So we obtain a map $\varphi : \mathbf{2}^P \to J(P)$.

Suppose that $g \leq_{\mathbf{2}^P} h$. If h(x) = 1 for some $x \in P$, then

$$g \leq_{\mathbf{2}^P} h \Longrightarrow g(x) \leq_P h(x) \Longrightarrow g(x) = 1.$$

So if $x \in \varphi(h)$ then $x \in \varphi(g)$, or equivalently $\varphi(h) \leq_{J(P)} \varphi(g)$. Therefore φ is order-reversing.

Given an order ideal $I \subset P$, define a map $\psi(I): P \to \mathbf{2}$ by

$$\psi(I)(x) := \begin{cases} 2 & \text{if } x \notin I \\ 1 & \text{if } x \in I \end{cases}.$$

Suppose that $x \leq_P y$. There exist three cases:

$$x, y \in I \Longrightarrow \psi(I)(x) = 1 = \psi(I)(y),$$

$$x,y\notin I\Longrightarrow \psi(I)(x)=2=\psi(I)(y),$$

$$x\in I,y\notin I\Longrightarrow \psi(I)(x)=1<_{\mathbf{2}}2=\psi(I)(y).$$

So $\psi(I)(x)$ is order-preserving, and we obtain a map $\psi:J(P)\to \mathbf{2}^P.$

Suppose that $I \leq_{J(P)} I'$. For $x \in P$ there exist three cases:

$$x \in I, x \in I' \Longrightarrow \psi(I)(x) = 1 = \psi(I')(x),$$

 $x \notin I, x \in I' \Longrightarrow \psi(I)(x) = 2 \ge_2 1 = \psi(I')(x),$
 $x \notin I, x \notin I' \Longrightarrow \psi(I)(x) = 2 = \psi(I')(x).$

So $\psi(I)(x) \geq_{\mathbf{2}} \psi(I')(x)$. Since x was arbitrary, this implies that $\psi(I) \geq_{\mathbf{2}^P} \psi(I')$. Therefore ψ is order-reversing.

We claim that φ and ψ are inverses. Consider $f \in \mathbf{2}^P$. By definition for $x \in P$,

$$[\psi\varphi(f)](x) = [\psi(f^{-1}(1))](p)$$

$$= \begin{cases} 2 & \text{if } x \notin f^{-1}(1) \\ 1 & \text{if } x \in f^{-1}(1) \end{cases}$$

$$= \begin{cases} 2 & \text{if } f(x) = 2 \\ 1 & \text{if } f(x) = 1 \end{cases} = f(x)$$

Therefore $\psi \varphi(f) = f$. Conversely, consider $I \in J(P)$. By definition

$$\varphi\psi(I) = \psi(I)^{-1}(1) = I.$$

Therefore $\varphi\psi(I) = I$. \square