
18.312: Algebraic Combinatorics Lionel Levine

Lecture 8

Lecture date: March 1, 2011 Notes by: Christopher Policastro

Remark: In the last lecture, someone asked whether all posets could be constructed from
a point using the operations of disjoint union, ordinal sum, cartesian product and expo-
nentiation. This is not possible in general. Consider the poset N := {a, b, c, d} with Hasse
diagram:

We can see that this poset is not representable as P + Q, P ⊕ Q, P × Q, or PQ for any
posets P and Q.

The class of posets that can be constructed using disjoint union and ordinal sum are called
series parallel posets. In exercise 3.13 of Stanley, it is shown that a poset is series parallel
iff its Hasse diagram does not contain N as a subdiagram.

Lattices

Recall from last lecture the definition of a lattice:

Definition 1 A poset L is a lattice if every pair of elements x, y has

(i) a least upper bound x ∨ y (called join), and

(ii) a greatest lower bound x ∧ y (called meet);

that is

z ≥ x ∨ y ⇐⇒ z ≥ x and z ≥ y
z ≤ x ∧ y ⇐⇒ z ≤ x and z ≤ y.

For a later result, we will need the following definition.
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Definition 2 An element z of a lattice L is called join irreducible if z 6= z1 ∨ z2 for
z1, z2 < z.

Observe that the meet and join operations are associative; we note that for meet

w ≤ (x ∧ y) ∧ z ⇔ w ≤ z, x ∧ y ⇔ w ≤ x, y, z
⇔ w ≤ x, y ∧ z ⇔ w ≤ x ∧ (y ∧ z)

and similarly for join

w ≥ (x ∨ y) ∨ z ⇔ w ≥ z, x ∨ y ⇔ w ≥ x, y, z
⇔ w ≥ x, y ∨ z ⇔ w ≥ x ∨ (y ∨ z).

Moreover observe that if L is finite, then L has a unique minimal element 0̂ :=
∧
x∈L x

and unique maximal element 1̂ :=
∨
x∈L. By definition

0̂ ∨ x = x, 0̂ ∧ x = 0̂,

and
1̂ ∨ x = 1̂, 1̂ ∧ x = x.

We might want to show that a poset is a lattice, but only know about one operation. The
following lemma tells us that sometimes this is enough.

Lemma 3 If P is a finite poset such that

(i) Every x, y ∈ P have a greatest lower bound.

(ii) P has a unique maximal element 1̂.

then P is a lattice.

Proof: Consider x, y ∈ P . Let S = {z ∈ P : z ≥ x, y}. Note that S 6= ∅ since 1̂ ∈ S. Take
x ∨ y :=

∧
z∈S z. We see that

z ≥ x, y ∀z ∈ S =⇒ x ∨ y ≥ x, y,

and
w ≥ x, y =⇒ w ∈ S =⇒ w ≥

∧
z∈S

z = x ∨ y.

This shows that P admits a join operation. 2

Notice that by an analogous argument, the same conclusion would follow from the existence
of least upper bounds and a unique minimal element. However the meet operation can
oftentimes be more natural than the join operation. We will see this in Example 6.
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Examples of Lattices

Example 4 (n) Recall that n (handwritten n) is the set [n] with the usual order relations.
We see that i ∧ j = min(i, j) and i ∨ j = max(i, j).

Example 5 (Boolean algebras) Recall that Bn = P([n]). It is a lattice with meet S∧T =
S ∩ T , and join S ∨ T = S ∪ T . This example reinforces our notation.

Example 6 (Partitions) Let πn = {partitions of [n]} ordered by refinement. Given par-
titions σ = (σ1, . . . , σk) and τ = (τ1, . . . , τl) define σ ∧ τ as

(nonempty intersections σi ∩ τj : 1 ≤ i ≤ k, 1 ≤ j ≤ l).

Since [n] is the unique maximal element of πn, Lemma 3 implies that πn is a lattice. Showing
that πn is a lattice without Lemma 3 would be more difficult because the join of two partitions
has a messy formula.

Example 7 (Vector Spaces) Let V be a vector space, and L be the set of linear subspaces
ordered by inclusion. L is lattice with meet S ∧ T = S ∩ T , and join S ∨ T = S + T =
{v + w : v ∈ S,w ∈ T}.

Example 8 (Groups) Let G be a group, and L be the set of subgroups ordered by inclusion.
L is a lattice with meet H ∧K = H ∩K, and join H ∨K = 〈H,K〉.

Note that Examples 7 and 8 are two cases of lattice constructions common to any algebraic
object.

Example 9 (Order-preserving maps) Let P be a poset, and L be a lattice. Recall that
LP = {order preserving maps P → L}. LP is a lattice with join

(f ∧ g) : P 3 x 7→ f(x) ∧ g(x) ∈ L,

and meet
(f ∨ g) : P 3 x 7→ f(x) ∨ g(x) ∈ L.

Distributive Lattices

In this lecture, we will focus on lattices with a certain property that makes them simi-
lar to Boolean algebras. The structure of these lattices is sufficiently nice to allow for a
classification theorem (cf. Theorem 15).
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Definition 10 A lattice L is distributive if the meet and join operations distribute over
each other i.e. for x, y, z ∈ L

(i) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

(ii) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Notice that a Boolean algebra is distributive since union and intersection distribute over
each other.

Definition 11 Given a poset P , an order ideal of P is a subset I ⊂ P such that for all
x ∈ I, if y ≤ x, then y ∈ I.

Consider for instance the following order ideal of B3 expressed in terms of it Hasse diagram:

Figure 1: Order ideal of B3

We will denote the set of order ideals as J(P ). Note that J(P ) is a poset under inclusion.
We will call an order ideal I ⊂ P principal if it is of the form I = 〈x〉 := {y ∈ P : y ≤P x}
for some x ∈ P .

Example 12 (Boolean algebras) Let +n1 = 1+ . . .+1 be the disjoint union of n copies
of 1. Since +n1 has no order relations, this means that every subset is an order ideal. So
J(+n1) = Bn.

Example 13 (n) Note that every order ideal of n is of the form 〈b〉 for some b ∈ n. Since
a ≤ b iff 〈a〉 ⊂ 〈b〉, this means that J(n) ' n+1.

Example 14 (N) Consider N = {a, b, c, d} defined at the beginning of lecture. We have

J(N) = {∅, {a}, {b}, {a, b, c}, {b, d}, {a, b, d}, {a, b, c, d}, {a, b}}.

This gives the following Hasse diagram:
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Figure 2: J(N)

Note that if I1, I2 ⊂ P are order ideals, then I1 ∩ I2 and I1 ∪ I2 are order ideals. Since
unions and intersections distribute over each other, this means that J(P ) is a distributive
lattice for any poset P . The following result tells us that if a distributive lattice is finite,
then it must be of this form.

Theorem 15 (Birkoff’s Theorem) 1 Let L be a finite distributive lattice. There exists
a poset P unique up to isomorphism such that L ' J(P ).

Proof:[Uniqueness] Given J(P ) we want to recover P . The subset of principal order ideals
is a copy of P sitting inside J(P ). However, we want to describe this subset intrinsically
without reference to P .

Fact 1. Let S ⊂ J(P ) be the subset of join irreducible elements. S ' P :

Let T ⊂ J(P ) be the subset of principal order ideals. Note that T ' P , because 〈x〉 ⊂ 〈y〉
iff x ≤P y. So it is enough to show that S = T .

(T ⊂ S): Suppose that 〈x〉 = I1 ∪ I2 for I1, I2 ∈ J(P ). This means that either x ∈ I1 or
x ∈ I2. So 〈x〉 ⊂ I1 or 〈x〉 ⊂ I2, implying 〈x〉 = I1 or 〈x〉 = I2.

(S ⊂ T ): Assume that I ∈ J(P ) is not principal. So we can find distinct maximal elements
x and y in I. Note that I − {x} and I − {y} are order ideals. Since

I = (I − {x}) ∪ (I − {y})

this implies that I is not join irreducible. 2

We can now show uniqueness. Suppose that J(P ) ' L ' J(Q) for posets P and Q. This
implies that the join irreducible elements of J(P ) and J(Q) are isomorphic. So by Fact 1,
we conclude that P ' Q. 2

Proof:[Existence] From the proof of uniqueness, we have to show that L = J(P ) for P the
join irreducible elements of L.

1This result is sometimes called the fundamental theorem of finite distributive lattices.
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Fact 2. For y ∈ L there exist y1, . . . , yn ∈ P such that y = y1 ∨ . . . ∨ yn. For n minimal,
this expression is unique up to permutation:

An element y ∈ L is either join irreducible, or expressible as y = y1∨y2 for y1, y2 < y. Since
L is finite, we see by induction that an element y ∈ L can be written as y = y1 ∨ . . . ∨ yn
for yi ∈ P .

Choose n minimal with this property. Suppose that y1 ∨ . . . ∨ yn = y = z1 ∨ . . . ∨ zn for
zj , yi ∈ P . Note that y ∧ zi = zi because zi ≤ z1 ∨ . . . ∨ zn = y. By distributivity

zi = zi ∧ y =

n∨
j=1

zi ∧ yj .

Since zi ∈ P , there exists some yj such that zi = zi ∧ yj . So zi ≤ yj .

Suppose that zi, zj ≤ yk for i 6= j. Since join is commutative and associative, we can assume
w.l.o.g that i = 1 and j = 2. Replace z1∨ z2 by yk in z1∨ . . .∨ zn. So y = yk ∨ (z3∨ . . .∨ zn)
contradicting minimality of n. Therefore σ ∈ Sn.

Switching the roles of yi and zj , we obtain τ ∈ Sn such that yτ(i) ≤ zσ(i) ≤ yi. By minimality
of n, we see that yτ(i) = yi. This gives the result. 2

Define a map f : J(P ) 3 I 7→
∨
x∈I x ∈ L. By Fact 2, f is surjective.

Define a map g : L 3 y 7→
⋃
yi
〈yi〉 ∈ J(P ) where y = y1 ∨ . . .∨ yn as in Fact 2. Since union

commutes, this map is well-defined by Fact 2. An order ideal I ⊂ P can be expressed as
I =

⋃
i 〈yi〉 for {y1, . . . yn} ⊂ P the maximal elements of I. Note that

g(y1 ∨ . . . ∨ yn) =
⋃
i

〈yi〉 = I

because n is minimal by maximality of the yi. Therefore gf is the identity on J(P ). This
implies that f is injective.

(f order-preserving): Suppose that I ⊂ I ′ for I, I ′ ∈ J(P ). We have

f(I ′) =
∨
y∈I′

y = (
∨
y∈I

y) ∨ (
∨

y∈I′−I
y)

= f(I) ∨ z

for some z ∈ L. This implies that f(I ′) ≥ f(I).
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(g order-preserving): Suppose that for I, I ′ ∈ J(P ), we have
∨
x∈I x ≤

∨
y∈I′ y. We want to

show that I ⊂ I ′. Note ∨
x∈I

x ≤
∨
y∈I′

y =⇒ x ≤
∨
y∈I′

y ∀x ∈ I

=⇒ x = x ∧ x = (
∨
y∈I′

y) ∧ x

=⇒ x =
∨
y∈I′

(y ∧ x)

by distributivity. Since x is join irreducible, this implies that x = y ∧ x for some y ∈ I ′. So
x ≤ y for some y ∈ I ′. This means that x ∈ I ′ because I ′ is an order ideal. Hence I ⊂ I ′.

Therefore J(P )
∼−→ L. 2

Note that we did not make full use of distributivity; we only needed to know that (x∨y)∧z =
(x ∧ z) ∨ (y ∧ z) for x, y, z ∈ L. Hence property (i) of Definition 10 implies property (ii).
This is a convenient fact for showing that a lattice is distributive, because only property (i)
of Definition 10 needs to be checked.

We will end this lecture with a proposition that gives us another way of thinking about
order ideals that will be useful when we try to compare posets.

Definition 16 Given a poset P , define P ∗ to be the set P with reversed order relations i.e.
x ≤P y iff x ≥P ∗ y.

Proposition 17 J(P ) ' (2P )∗.

Proof: Given a map f ∈ 2P , let ϕ(f) = f−1(1) ⊂ P . Since f is order-preserving, this
implies that ϕ(f) ∈ J(P ). So we obtain a map ϕ : 2P → J(P ).

Suppose that g ≤2P h. If h(x) = 1 for some x ∈ P , then

g ≤2P h =⇒ g(x) ≤P h(x) =⇒ g(x) = 1.

So if x ∈ ϕ(h) then x ∈ ϕ(g), or equivalently ϕ(h) ≤J(P ) ϕ(g). Therefore ϕ is order-
reversing.

Given an order ideal I ⊂ P , define a map ψ(I) : P → 2 by

ψ(I)(x) :=

{
2 if x /∈ I
1 if x ∈ I

.

Suppose that x ≤P y. There exist three cases:

x, y ∈ I =⇒ ψ(I)(x) = 1 = ψ(I)(y),
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x, y /∈ I =⇒ ψ(I)(x) = 2 = ψ(I)(y),

x ∈ I, y /∈ I =⇒ ψ(I)(x) = 1 <2 2 = ψ(I)(y).

So ψ(I)(x) is order-preserving, and we obtain a map ψ : J(P )→ 2P .

Suppose that I ≤J(P ) I
′. For x ∈ P there exist three cases:

x ∈ I, x ∈ I ′ =⇒ ψ(I)(x) = 1 = ψ(I ′)(x),

x /∈ I, x ∈ I ′ =⇒ ψ(I)(x) = 2 ≥2 1 = ψ(I ′)(x),

x /∈ I, x /∈ I ′ =⇒ ψ(I)(x) = 2 = ψ(I ′)(x).

So ψ(I)(x) ≥2 ψ(I ′)(x). Since x was arbitrary, this implies that ψ(I) ≥2P ψ(I ′). Therefore
ψ is order-reversing.

We claim that ϕ and ψ are inverses. Consider f ∈ 2P . By definition for x ∈ P ,

[ψϕ(f)](x) = [ψ(f−1(1))](p)

=

{
2 if x /∈ f−1(1)

1 if x ∈ f−1(1)

=

{
2 if f(x) = 2

1 if f(x) = 1
= f(x)

Therefore ψϕ(f) = f . Conversely, consider I ∈ J(P ). By definition

ϕψ(I) = ψ(I)−1(1) = I.

Therefore ϕψ(I) = I. 2
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