18.312: Algebraic Combinatorics Lionel Levine

Lecture 8
Lecture date: March 1, 2011 Notes by: Christopher Policastro

Remark: In the last lecture, someone asked whether all posets could be constructed from
a point using the operations of disjoint union, ordinal sum, cartesian product and expo-
nentiation. This is not possible in general. Consider the poset N := {a, b, c,d} with Hasse
diagram:

b d
a<b
c<b
c<d
a c

We can see that this poset is not representable as P+ Q, P& Q, P x Q, or P% for any
posets P and Q.

The class of posets that can be constructed using disjoint union and ordinal sum are called
series parallel posets. In exercise 3.13 of Stanley, it is shown that a poset is series parallel
iff its Hasse diagram does not contain N as a subdiagram.

Lattices

Recall from last lecture the definition of a lattice:
Definition 1 A poset L is a lattice if every pair of elements x,y has

(i) a least upper bound x \V y (called join), and

(ii) a greatest lower bound x Ay (called meet);

that is

z>2axVy < z>zand 2>y
z<zAy < z<zandz<y.

For a later result, we will need the following definition.
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Definition 2 An element z of a lattice L is called join irreducible if z # z1 V zo for
21,22 < Z.
Observe that the meet and join operations are associative; we note that for meet

w<(zAyYhzew<z,zANyew<x,y,2
swlz,yhzew<zAyAz)

and similarly for join

w>(zVy)Vzew>z,aVyesw>x,y,2
sw>zyVzew>zV(yVe).

Moreover observe that if L is finite, then L has a unique minimal element 0 := Naper @
and unique maximal element 1 := Ve By definition
@\/mzx, 0/\1‘:0,
and
lve=1, 1Az=u=x.

We might want to show that a poset is a lattice, but only know about one operation. The
following lemma tells us that sometimes this is enough.

Lemma 3 If P is a finite poset such that

(i) Every x,y € P have a greatest lower bound.

(ii) P has a unique mazimal element 1.
then P is a lattice.

Proof: Consider z,y € P. Let S = {z € P: z > z,y}. Note that S # () since 1 € S. Take
zVy:= \,cq2 We see that

z>xy VzeS=axVy>uzx,y,

and
w>ry=—wes = w> /\z:x\/y.
z€S
This shows that P admits a join operation. O

Notice that by an analogous argument, the same conclusion would follow from the existence
of least upper bounds and a unique minimal element. However the meet operation can
oftentimes be more natural than the join operation. We will see this in Example 6.

8-2



Examples of Lattices

Example 4 (n) Recall that n (handwritten n) is the set [n] with the usual order relations.
We see that i A j = min(i, j) and i V j = max(i, 7).

Example 5 (Boolean algebras) Recall that B,, = P([n]). Itis a lattice with meet SAT =
SNT, and join SVT = SUT. This example reinforces our notation.

Example 6 (Partitions) Let m, = {partitions of [n]} ordered by refinement. Given par-
titions 0 = (01,...,0%) and 7 = (71,...,7) define o AT as
(nonempty intersections o; N 7 1<i<k1<j< 0).

Since [n] is the unique maximal element of 7, Lemma 3 implies that m, is a lattice. Showing
that m, is a lattice without Lemma & would be more difficult because the join of two partitions
has a messy formula.

Example 7 (Vector Spaces) Let V be a vector space, and L be the set of linear subspaces
ordered by inclusion. L is lattice with meet SANT = SNT, and join SVT = S+ T =
{fv+w:veSweT}.

Example 8 (Groups) Let G be a group, and L be the set of subgroups ordered by inclusion.
L is a lattice with meet HANK = HN K, and join HV K = (H,K).

Note that Examples 7 and 8 are two cases of lattice constructions common to any algebraic
object.

Example 9 (Order-preserving maps) Let P be a poset, and L be a lattice. Recall that
LY = {order preserving maps P — L}. L' is a lattice with join

(fAg): Pz~ f(z)Ag(x) €L,

and meet
(fVg):P>xz— f(z)Vg(x) € L.

Distributive Lattices

In this lecture, we will focus on lattices with a certain property that makes them simi-
lar to Boolean algebras. The structure of these lattices is sufficiently nice to allow for a
classification theorem (cf. Theorem 15).
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Definition 10 A lattice L is distributive if the meet and join operations distribute over
each other i.e. for x,y,z € L

(i) (xVy)Nz=(xAz)V(yAz)

(i) (x ANy)Vz=(xVz)A(yVz).

Notice that a Boolean algebra is distributive since union and intersection distribute over
each other.

Definition 11 Given a poset P, an order ideal of P is a subset I C P such that for all
zel, ify<z, thenyel.

Consider for instance the following order ideal of B3 expressed in terms of it Hasse diagram:

L el
~
N
/ ° [ Y J

/ N

H .
1 ™,
i \
\ \
3 \
\ [ ] o ° i

\

S -

Figure 1: Order ideal of B3

We will denote the set of order ideals as J(P). Note that J(P) is a poset under inclusion.
We will call an order ideal I C P principal if it is of the form I = (z) :={y € P:y <p x}
for some z € P.

Example 12 (Boolean algebras) Let +,1 = 1+...+4 1 be the disjoint union of n copies
of 1. Since +,1 has no order relations, this means that every subset is an order ideal. So

J(+n1) = By,.

Example 13 (n) Note that every order ideal of m is of the form (b) for some b € n. Since
a < b iff (a) C (b), this means that J(n) ~ n+1.

Example 14 (N) Consider N = {a,b,c,d} defined at the beginning of lecture. We have

J(N) ={0,{a},{b},{a,b,c},{b,d},{a,b,d},{a,b,c,d},{a,b}}.

This gives the following Hasse diagram:
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z

Figure 2: J(N)

Note that if I;,Is C P are order ideals, then I; N Iy and I; U I are order ideals. Since
unions and intersections distribute over each other, this means that J(P) is a distributive
lattice for any poset P. The following result tells us that if a distributive lattice is finite,
then it must be of this form.

Theorem 15 (Birkoff’s Theorem) ' Let L be a finite distributive lattice. There exists
a poset P unique up to isomorphism such that L ~ J(P).

Proof:[Uniqueness| Given J(P) we want to recover P. The subset of principal order ideals
is a copy of P sitting inside J(P). However, we want to describe this subset intrinsically
without reference to P.

Fact 1. Let S C J(P) be the subset of join irreducible elements. S ~ P:

Let T' C J(P) be the subset of principal order ideals. Note that T~ P, because (z) C (y)
iff x <p y. So it is enough to show that S =T.

(T C S): Suppose that (x) = I} U Iy for I1,I; € J(P). This means that either x € I; or
x € Iy. So (x) C I or (x) C Iy, implying (x) = I or (z) = Is.

(S C T): Assume that I € J(P) is not principal. So we can find distinct maximal elements
x and y in I. Note that I — {z} and I — {y} are order ideals. Since

I'=({I—{z}) U —A{y})
this implies that I is not join irreducible. O

We can now show uniqueness. Suppose that J(P) ~ L ~ J(Q) for posets P and . This
implies that the join irreducible elements of J(P) and J(Q) are isomorphic. So by Fact 1,
we conclude that P ~ Q. O

Proof:[Existence] From the proof of uniqueness, we have to show that L = J(P) for P the
join irreducible elements of L.

I This result is sometimes called the fundamental theorem of finite distributive lattices.
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Fact 2. For y € L there exist y1,...,yn € P such that y = y; V...V y,. For n minimal,
this expression is unique up to permutation:

An element y € L is either join irreducible, or expressible as y = y1 Vys for y1,y2 < y. Since
L is finite, we see by induction that an element y € L can be written as y =1 V...V y,
for y; € P.

Choose n minimal with this property. Suppose that y1 V...Vy, =y =21 V...V 2, for
zj,y; € P. Note that y A z; = z; because z; < 21 V...V 2z, = y. By distributivity

n
2=z Ny = \/Ziij.
j=1

Since z; € P, there exists some y; such that z; = z; Ay;. So z; < y;.

Suppose that z;, z; <y, for i # j. Since join is commutative and associative, we can assume
w.l.o.g that = 1 and j = 2. Replace 21 Vza by yp in 21 V... Vz,. Soy =yr V(23V...V2zy)
contradicting minimality of n. Therefore o € S,,.

Switching the roles of y; and z;, we obtain 7 € S, such that y,(;) < z5(;) < y;- By minimality
of n, we see that y, ;) = y;. This gives the result. O

Define a map f: J(P) 3 I+ \/ ;2 € L. By Fact 2, f is surjective.

Define amap g: L >y — U, (y;) € J(P) where y =y1 V...V y, as in Fact 2. Since union
commutes, this map is well-defined by Fact 2. An order ideal I C P can be expressed as
I =, (i) for {y1,...yn} C P the maximal elements of I. Note that

g Ve vy =) =1

)

because n is minimal by maximality of the y;. Therefore gf is the identity on J(P). This
implies that f is injective.

(f order-preserving): Suppose that I C I’ for I,I’ € J(P). We have

f=Vu=N\/vv(\ v
yel’ yel yel'—1I
=f)Vvz

for some z € L. This implies that f(I') > f(I).
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(g order-preserving): Suppose that for I,I' € J(P), we have \/ .,z </

show that I C I’'. Note
\/xﬁ\/y:>x§\/y Veel

yer Y- We want to

zel yel’ yel’
:>x::E/\:13:(\/ y) A x
yel’
= x = \/(y/\x)
yel’

by distributivity. Since x is join irreducible, this implies that x = y A x for some y € I'. So
x <y for some y € I'. This means that z € I’ because I’ is an order ideal. Hence I C I'.

Therefore J(P) — L. O

Note that we did not make full use of distributivity; we only needed to know that (xVy)Az =
(x ANz)V (yAz) for x,y,z € L. Hence property (i) of Definition 10 implies property (ii).
This is a convenient fact for showing that a lattice is distributive, because only property ()
of Definition 10 needs to be checked.

We will end this lecture with a proposition that gives us another way of thinking about

order ideals that will be useful when we try to compare posets.

Definition 16 Given a poset P, define P* to be the set P with reversed order relations i.e.
©<pyiffx=p-y.

Proposition 17 J(P) ~ (2F)*.
Proof: Given a map f € 2°, let o(f) = f~!(1) C P. Since f is order-preserving, this
implies that o(f) € J(P). So we obtain a map ¢ : 28 — J(P).
Suppose that g <,r h. If h(z) =1 for some x € P, then
g <qop h=g(z) <p h(z) = g(z) = L.

So if x € ¢(h) then x € p(g), or equivalently ¢(h) <;py ¢(g). Therefore ¢ is order-
reversing.

Given an order ideal I C P, define a map ¢ (I) : P — 2 by

2 ifaxél
1 ifzel’

P(I)(x) = {

Suppose that  <p y. There exist three cases:

v,y € I = ¢(I)(z) =1=p(I)(y),
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z,y ¢ I = ¢(I)(z) =2 =9I)(y),

relydl— d(D)(a) =1 <22 =v(I)y).

So ¥(I)(x) is order-preserving, and we obtain a map 1 : J(P) — 2F.

Suppose that I <;p) I'. For x € P there exist three cases:
relxel = )(zx)=1=yI)(x),
r¢lxel = Y)(z)=2>31=¢")(x),

¢ La¢l = y(I)(x)=2=y(I) ().

So ¢(I)(x) >2 ¥(I')(x). Since x was arbitrary, this implies that ¢ (I) >4p (I"). Therefore
1) is order-reversing.

We claim that ¢ and v are inverses. Consider f € 2°. By definition for z € P,

[We(H)(z) = [L(f1 (1))

Therefore ¥o(f) = f. Conversely, consider I € J(P). By definition
py(I) = ()~ (1) = 1.
Therefore (1) =1. O
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