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1 Order-preserving maps from posets to chains

1.1 Order-preserving maps from n to m

We begin with a question.

Question 1 How many order-preserving maps are there from the n-chain n to the m-chain
m, m,n ∈ N? (Equivalently, what is mn?)

In an order-preserving map f from n to m, intervals of n are mapped to elements of m. Let
ai be the number of j ∈ n with f(j) = i, i ∈m. The set of {ai} uniquely determine f since
f preserve order. So we have reduced the question to the following equivalent problem:

Question 2 How many solutions in non-negative integers a1, a2, . . . , am are there of the
equation a1 + a2 + . . .+ am = n?

A solution to this equation is known as a composition of n rather than a partition, since
the order of the ai matters. So we would like to know: how many compositions α(n,m) of
n are there into m (nonnegative) parts?

We have α(n,m) = [xn](1+x2+x3+. . .)m =

(
n+m− 1
m− 1

)
. But this means α(n,m+1) =(

n+m
m

)
=

(
n+m
n

)
= α(m,n+ 1)—a coincidence? No, since we can use a standard

bijection here often known as “Stars and Bars” or “Balls and Walls.” Each composition of
n into m parts is equivalent to placing n stars in a line, and separating them with m − 1

bars. Hence the number of compositions of n into m parts is

(
n+m− 1
m− 1

)
. We can also

get an immediate bijection between α(m,n+ 1) and α(n,m+ 1) by swapping the stars and
bars.

This leads us to ask the following:
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Question 3 Are (m + 1)n and (n + 1)m isomorphic as posets?

We already showed that the number of maps α(n,m + 1) from n to m + 1 is equal to the
number of maps α(m,n+1) from m to n + 1. But it is also true that (m + 1)n ' (n + 1)m,
because

(m + 1)n ' (2m)n ' 2m×n ' (2n)m ' (n + 1)m.

Moreover, all of these are isomorphic to J(m× n).

1.2 Order-preserving maps from P to m

Now we consider the more general case of order-preserving maps from a finite poset P to
m.

Lemma 4 #{Order-preserving maps f : P →m} = #{Multichains 0̂ = I0 ≤ . . . ≤ Im = 1̂
in J(P )}.

Proof: Given f : P → m, define Ii = f−1({1, 2, . . . , i}). This is an order ideal of P , since
if x ∈ Ii and y ≤ x, then f(x) ≤ i =⇒ f(y) ≤ f(x) ≤ i =⇒ y ∈ Ii. This provides the
desired bijection. 2

Lemma 5 #{Surjective, order-preserving maps f : P → m} = #{Chains 0̂ = I0 < . . . <
Im = 1̂ in J(P )}.

Proof: Again consider Ii as defined above; we only need to show that the inequalities are
now strict. But now since f is surjective, there exists x with f(x) = i+ 1, so x ∈ Ii+1 but
x /∈ Ii. Hence Ii+1 > Ii. 2

9-2



2 Linear extensions

Definition 6 Let P be a poset with |P | = n. A linear extension of P is an order-preserving
bijection from P to n.

Alternatively, a linear extension of P is a labeling of the elements of P with a distinct
inger from 1 through n, such that a’s label is smaller than that of b if a ≤ b. For example,
consider the following Hasse diagram of a linear extension of P = 3× 3:

Figure 1: Example: A linear extension of 3× 3
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Define e(P ) = #{linear extensions of P}. Then from the section before, we have

e(P ) = #{linear extensions of P}
= #{surjective, order-preserving maps from P → n}
= #{bijective, order-preserving maps from P → n} (since |P | = n)

= #{chains 0̂ = I0 < . . . < Im = 1̂ in J(P )} (by Lemma 5)

= #{maximal chains in J(P )}. (since rank(J(P )) = n)

Next are a few examples.

Example 7 #{maximal chains in m× n}.

We have

m× n = 2m−1 × 2n−1 = 2m−1+n−1

=⇒ m× n = J((m− 1) + (n− 1)),
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so

#{maximal chains in m× n} = #{linear extensions of (m− 1) + (n− 1)}
= e((m− 1) + (n− 1))

=

(
m+ n− 2
m− 1

)
.

Example 8 #{maximal chains in boolean algebra Bn}.

Since Bn = J(1 + 1 + . . .+ 1︸ ︷︷ ︸
n

), the number of maximal chains in Bn is e(1+1+ . . .+1) = n!.

3 Incidence algebras

3.1 Definitions

Let P be a finite poset and K a finite field. We will usually take K = C.

Definition 9 Int(P ) = {intervals [x, y] ⊆ P , x ≤ y}. (The empty set is not an interval.)

Definition 10 The incidence algebra I(P ) of a poset P is the vector space of all functions
f : Int(P )→ K.

I(P ) has multiplication (fg)[x, y] =
∑

x≤z≤y f([x, z])g([z, y]).

An equivalent (really the dual) definition of I(P ) is the following:

Definition 11 I(P ) is the set of formal linear combinations of intervals∑
[x,y]∈Int(P ) f([x, y])[x, y].

with multiplication

[x, y][z, w] =

{
[x,w], y = z

0, otherwise.
(1)
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We can check that ∑
[x,y]∈Int(P )

f([x, y])[x, y]

 ∑
[z,w]∈Int(P )

g([z, w])[z, w]


=

∑
[x,y],[z,w]∈Int(P )

f([x, y])g([z, w]) [x, y][z, w]︸ ︷︷ ︸
0 unless y=z

=
∑

x≤y≤w
f([x, y])g([y, w])[x,w]

=
∑

[x,w]∈Int(P )

f([x, y])g([y, z])[x,w].

Another equivalent definition involves matrices. Let the elements of P be {x1, . . . , xn}.
Then:

Definition 12 I(P ) = {n× n matrices A | aij ∈ K, aij = 0 unless xi ≤ xj}.

So each interval [xi, xj ] with xi ≤ xj is represented as the matrix eij with just one nonzero
entry aij .

Example 13 P = n. Then I(P ) is the set of upper triangular n× n matrices.

Example 14 P = B2. Then I(P ) looks like


∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗

, where * denotes a nonzero

element of K.

3.2 ζ and 1; more chain-counting

Two important elements of I(P ) are the zeta element ζ and the identity, 1.

Definition 15 ζ([x, y]) = 1∀[x, y] ∈ Int(P ).

Example 16

ζ2([x, y]) =
∑

x≤z≤y
ζ([x, z])ζ([z, y]) = #{[x, y] ∈ Int(P )}.
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Example 17

ζk([x, y]) =
∑

x=z0≤...≤zk=y

k∏
i=1

ζ([zi−1, zi]) =
∑

x=z0≤...≤zk=y

1

, so ζk([x, y]) = #{multichains x = z0 ≤ z1 ≤ . . . ≤ zk = y.}

Definition 18 1([x, y]) = δxy =

{
1, x = y,

0, otherwise.

Now consider (ζ − 1) ∈ I(P ); we have (ζ − 1)([x, y]) =

{
0, x = y,

1, x 6= y.
. So

(ζ − 1)k([x, y]) =
∑

x=z0≤...≤zk=y

(ζ − 1)([zi−1, zi])

which counts precisely the number of chains x = z0 < z1 < . . . < zk = y.

Using this result, we have the following:

Lemma 19 (2 − ζ) is invertible in I(P ), and (2 − ζ)−1([x, y]) =
#{chains from x to y, regardless of length.}

Proof: We use the matrix definition of I(P ); we have f([x, x]) 6= 0∀x ∈ P ⇔ f is invertible.

So since (2−ζ)([x, y]) =

{
1, x = y,

−1, x < y
, 2−ζ is invertible. Now let r = rank P ; since (ζ−1)k

counts the number of chains of length k + 1, we must have (ζ − 1)r = 0. But(
1 + (ζ − 1) + (ζ − 1)2 + . . .+ (ζ − 1)r−1

)
(1− (1− ζ)) = 1− (ζ − 1)r = 1,

so the inverse of 2− ζ is 1 + (ζ − 1) + (ζ − 1)2 + . . . + (ζ − 1)r−1, which (when applied to
the interval [x, y]) is the total number of chains of any length from x to y. � 2

3.3 For next time...

Claim. f−1([x, y]) depends only on the poset structure of [x, y].

Definition 20 The Möbius element µ ∈ I(P ) is defined by µ = ζ−1.
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