18.312: Algebraic Combinatorics Lionel Levine

Lecture 9
Lecture date: March 3, 2011 Notes by: Damien Jiang

1 Order-preserving maps from posets to chains

1.1 Order-preserving maps from n to m

We begin with a question.

Question 1 How many order-preserving maps are there from the n-chain n to the m-chain
m, m,n € N? (Equivalently, what is m™?)

In an order-preserving map f from n to m, intervals of n are mapped to elements of m. Let
a; be the number of j € n with f(j) =4, i € m. The set of {a;} uniquely determine f since
f preserve order. So we have reduced the question to the following equivalent problem:

Question 2 How many solutions in mon-negative integers ai,as,...,a,, are there of the
equation a1 +as + ...+ am =n?

A solution to this equation is known as a composition of n rather than a partition, since
the order of the a; matters. So we would like to know: how many compositions «(n,m) of
n are there into m (nonnegative) parts?

-1
We have a(n, m) = [2"](1+22+23+...)" = ( " :7—177_1 1 ) . But this means a(n,m+1) =
n+m n+m o .
< m ) = ( n = a(m,n + 1)—a coincidence? No, since we can use a standard

bijection here often known as “Stars and Bars” or “Balls and Walls.” Each composition of
n into m parts is equivalent to placing n stars in a line, and separating them with m — 1

ntm—1 ).Wecanalso
m—1

get an immediate bijection between a(m,n+ 1) and a(n, m+ 1) by swapping the stars and
bars.

bars. Hence the number of compositions of n into m parts is (

This leads us to ask the following:
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Question 3 Are (m +1)" and (n + 1)™ isomorphic as posets?

We already showed that the number of maps a(n,m + 1) from n to m + 1 is equal to the
number of maps a(m,n+1) from m to n + 1. But it is also true that (m + 1)" ~ (n + 1)™,

because
(m+1)" ~ (2™)" ~ 250 ~ (2™ ~ (n + 1)™.

Moreover, all of these are isomorphic to J(m x n).

1.2 Order-preserving maps from P to m

Now we consider the more general case of order-preserving maps from a finite poset P to
m.

Lemma 4 #{Order-preserving maps f : P — m} = #{ Multichains 0 = Iy < ... < I, =1
in J(P)}.

Proof: Given f: P — m, define I; = f~1({1,2,...,i}). This is an order ideal of P, since
if €[, and y < z, then f(z) <i = f(y) < f(x) <i = y € I;. This provides the
desired bijection. O

Lemma 5 #{Surjective, order-preserving maps f : P — m} = #{Chains 0=I<..<
I, =1in J(P)}.

Proof: Again consider I; as defined above; we only need to show that the inequalities are
now strict. But now since f is surjective, there exists x with f(x) =i+ 1, so z € I;11 but
x ¢ I;. Hence I; 11 > I;. O
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2 Linear extensions

Definition 6 Let P be a poset with |P| = n. A linear extension of P is an order-preserving
bijection from P to n.

Alternatively, a linear extension of P is a labeling of the elements of P with a distinct
inger from 1 through n, such that a’s label is smaller than that of b if a < b. For example,
consider the following Hasse diagram of a linear extension of P = 3 x 3:

Figure 1: Example: A linear extension of 3 x 3

7/9\8
SN N
NSNS

N

Define e(P) = #{linear extensions of P}. Then from the section before, we have

e(P) = #{linear extensions of P}

= #{surjective, order-preserving maps from P — n}

= #{Dbijective, order-preserving maps from P — n} (since |P| =n)
= #{chains 0 =Ip < ... < I, =1 in J(P)} (by Lemma 5)
= #{maximal chains in J(P)}. (since rank(J(P)) = n)

Next are a few examples.

Example 7 #{mazimal chains in m x n}.

We have

mxn— 2m—1 % 2n—1 — 2m—1+n—1

— mxn=J(m-1)+(n-1)),
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SO

#{maximal chains in m x n} = #{linear extensions of (m —1) 4+ (n—1)}
=e((m—1)+(n—-1))

_f m+n-—2
- m—1 '
Example 8 #{mazimal chains in boolean algebra By }.

Since B, = J(1 + 1+ ...+ 1), the number of maximal chains in B, ise(1+1+...+1) =nl.
—_—

n

3 Incidence algebras

3.1 Definitions

Let P be a finite poset and K a finite field. We will usually take K = C.
Definition 9 Int(P) = {intervals [x,y] C P, x < y}. (The empty set is not an interval.)

Definition 10 The incidence algebra I(P) of a poset P is the vector space of all functions
f:Int(P) — K.

I(P) has multiplication (fg)[z,y] = 3., <.<, f([z,2])g([z, y])-
An equivalent (really the dual) definition of I(P) is the following:

Definition 11 I(P) is the set of formal linear combinations of intervals

Z[:p,y]elnt(P) [z, y]) [z, y)-

with multiplication
[x,w], y==z

0, otherwise.

[z, yl[z, w] = {
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We can check that

Y. fzy)ley] Y. gz w])lzw]

[z,y]€lnt(P) [2,w]€Int(P)
= > HmDg(zw) o yllz v

[z,y],[z,w]€Int(P)

= 3 fe gy, w))lz, w]

0 unless y=z

rz<y<w
= > f=y)e(y 2w, w).
[z,w]€Int(P)
Another equivalent definition involves matrices. Let the elements of P be {z1,...,2,}.

Then:
Definition 12 I(P) = {n x n matrices A | a;; € K, a;; =0 unless x; < x;}.

So each interval [x;, z;] with z; < z; is represented as the matrix e;; with just one nonzero
entry a;;.

Example 13 P =n. Then I(P) is the set of upper triangular n x n matrices.

* ok % x
Example 14 P = By. Then I(P) looks like 8 ; 2 : , where * denotes a nonzero
0 0 0 =

element of K.

3.2 ( and 1; more chain-counting

Two important elements of I(P) are the zeta element ¢ and the identity, 1.
Definition 15 (([z,y]) = 1V[z,y] € Int(P).

Example 16
Gl = Y = 2)<([=9]) = #{[, 9] € Int(P)}.

z<z<y



Example 17
k
Fle= Y [[lenah= S
z=20<...<zp=yi=1 r=20<...<2p=Y
, 50 CF([x,y]) = #{multichains * = 20 < 21 < ... < zp = y.}
1, z=uy,

Definition 18 1([z,y]) = 0y = {0 otherwise

0 =
Now consider (¢ — 1) € I(P); we have (( — 1)([z,y]) =1 =Y 5o
1,z #y.
=Dz = > (= D(z-1.2)
w=20<..<zp=y
which counts precisely the number of chains x = 29 < 21 < ... < zp = ¥.
Using this result, we have the following:
Lemma 19 (2 — () is nvertible in I(P), and (2 — ) Y[z,9]) =

#{chains from x toy, regardless of length.}

Proof: We use the matrix definition of I(P); we have f([z,z]) # 0Vx € P < f is invertible.
1, =1y,
-1, z<y
counts the number of chains of length k£ + 1, we must have (¢ — 1)" = 0. But

(I+C-D+C-1°+...+(C-)"H1-1-¢)=1-(-1)" =1,

so the inverse of 2 — (is 1+ (( — 1) + (¢ —1)2+... 4+ (¢ = 1)"7}, which (when applied to
the interval [z, y]) is the total number of chains of any length from x to y. B O

So since (2—¢)([z,y]) = , 2—( is invertible. Now let 7 = rank P; since (¢ —1)*

3.3 For next time...

Claim. f~!([z,y]) depends only on the poset structure of [x,].

Definition 20 The Mdébius element pu € I(P) is defined by p = (L.



