18.312: Algebraic Combinatorics

Lionel Levine

Lecture 9

Lecture date: March 3, 2011

Notes by: Damien Jiang

1 Order-preserving maps from posets to chains

1.1 Order-preserving maps from n to m

We begin with a question.

Question 1 How many order-preserving maps are there from the n-chain **n** to the m-chain \mathbf{m} , $m, n \in \mathbb{N}$? (Equivalently, what is $\mathbf{m}^{\mathbf{n}}$?)

In an order-preserving map f from \mathbf{n} to \mathbf{m} , intervals of \mathbf{n} are mapped to elements of \mathbf{m} . Let a_i be the number of $j \in \mathbf{n}$ with f(j) = i, $i \in \mathbf{m}$. The set of $\{a_i\}$ uniquely determine f since f preserve order. So we have reduced the question to the following equivalent problem:

Question 2 How many solutions in non-negative integers a_1, a_2, \ldots, a_m are there of the equation $a_1 + a_2 + \ldots + a_m = n$?

A solution to this equation is known as a *composition* of n rather than a partition, since the order of the a_i matters. So we would like to know: how many compositions $\alpha(n, m)$ of n are there into m (nonnegative) parts?

We have
$$\alpha(n,m)=[x^n](1+x^2+x^3+\ldots)^m=\binom{n+m-1}{m-1}$$
. But this means $\alpha(n,m+1)=\binom{n+m}{m}=\binom{n+m}{n}=\alpha(m,n+1)$ —a coincidence? No, since we can use a standard bijection here often known as "Stars and Bars" or "Balls and Walls." Each composition of n into m parts is equivalent to placing n stars in a line, and separating them with $m-1$ bars. Hence the number of compositions of n into m parts is $\binom{n+m-1}{m-1}$. We can also get an immediate bijection between $\alpha(m,n+1)$ and $\alpha(n,m+1)$ by swapping the stars and bars.

This leads us to ask the following:

Question 3 Are $(m+1)^n$ and $(n+1)^m$ isomorphic as posets?

We already showed that the number of maps $\alpha(n, m+1)$ from **n** to $\mathbf{m} + \mathbf{1}$ is equal to the number of maps $\alpha(m, n+1)$ from **m** to $\mathbf{n} + \mathbf{1}$. But it is also true that $(\mathbf{m} + \mathbf{1})^{\mathbf{n}} \simeq (\mathbf{n} + \mathbf{1})^{\mathbf{m}}$, because

$$(m+1)^n \simeq (2^m)^n \simeq 2^{m \times n} \simeq (2^n)^m \simeq (n+1)^m.$$

Moreover, all of these are isomorphic to $J(\mathbf{m} \times \mathbf{n})$.

1.2 Order-preserving maps from P to m

Now we consider the more general case of order-preserving maps from a finite poset P to \mathbf{m} .

Lemma 4 $\#\{Order\text{-preserving maps } f: P \to \mathbf{m}\} = \#\{Multichains \hat{0} = I_0 \leq \ldots \leq I_m = \hat{1} \text{ in } J(P)\}.$

Proof: Given $f: P \to \mathbf{m}$, define $I_i = f^{-1}(\{1, 2, ..., i\})$. This is an order ideal of P, since if $x \in I_i$ and $y \le x$, then $f(x) \le i \implies f(y) \le f(x) \le i \implies y \in I_i$. This provides the desired bijection. \square

Lemma 5 $\#\{Surjective, order-preserving maps <math>f: P \to \mathbf{m}\} = \#\{Chains \ \hat{0} = I_0 < \ldots < I_m = \hat{1} \ in \ J(P)\}.$

Proof: Again consider I_i as defined above; we only need to show that the inequalities are now strict. But now since f is surjective, there exists x with f(x) = i + 1, so $x \in I_{i+1}$ but $x \notin I_i$. Hence $I_{i+1} > I_i$. \square

2 Linear extensions

Definition 6 Let P be a poset with |P| = n. A linear extension of P is an order-preserving bijection from P to \mathbf{n} .

Alternatively, a linear extension of P is a labeling of the elements of P with a distinct inger from 1 through n, such that a's label is smaller than that of b if $a \le b$. For example, consider the following Hasse diagram of a linear extension of $P = \mathbf{3} \times \mathbf{3}$:

Figure 1: Example: A linear extension of 3×3

Define $e(P) = \#\{\text{linear extensions of } P\}$. Then from the section before, we have

$$e(P) = \#\{\text{linear extensions of }P\}$$

$$= \#\{\text{surjective, order-preserving maps from }P \to \mathbf{n}\}$$

$$= \#\{\text{bijective, order-preserving maps from }P \to \mathbf{n}\} \qquad (\text{since }|P| = n)$$

$$= \#\{\text{chains }\hat{0} = I_0 < \ldots < I_m = \hat{1} \text{ in } J(P)\} \qquad (\text{by Lemma 5})$$

$$= \#\{\text{maximal chains in } J(P)\}. \qquad (\text{since rank}(J(P)) = n)$$

Next are a few examples.

Example 7 $\#\{maximal\ chains\ in\ \mathbf{m}\times\mathbf{n}\}.$

We have

$$\mathbf{m} \times \mathbf{n} = \mathbf{2}^{\mathbf{m}-\mathbf{1}} \times \mathbf{2}^{\mathbf{n}-\mathbf{1}} = \mathbf{2}^{\mathbf{m}-\mathbf{1}+\mathbf{n}-\mathbf{1}}$$
$$\implies \mathbf{m} \times \mathbf{n} = J((\mathbf{m}-\mathbf{1}) + (\mathbf{n}-\mathbf{1})),$$

SO

$$\begin{split} \#\{\text{maximal chains in } \mathbf{m} \times \mathbf{n}\} &= \#\{\text{linear extensions of } (\mathbf{m-1}) + (\mathbf{n-1})\} \\ &= e((\mathbf{m-1}) + (\mathbf{n-1})) \\ &= \left(\begin{array}{c} m+n-2 \\ m-1 \end{array} \right). \end{split}$$

Example 8 $\#\{maximal\ chains\ in\ boolean\ algebra\ B_n\}.$

Since $B_n = J(\underbrace{1+1+\ldots+1}_n)$, the number of maximal chains in B_n is $e(1+1+\ldots+1) = n!$.

3 Incidence algebras

3.1 Definitions

Let P be a finite poset and K a finite field. We will usually take $K = \mathbb{C}$.

Definition 9 $Int(P) = \{intervals [x, y] \subseteq P, x \le y\}.$ (The empty set is not an interval.)

Definition 10 The incidence algebra I(P) of a poset P is the vector space of all functions $f: Int(P) \to K$.

I(P) has multiplication $(fg)[x,y] = \sum_{x \le z \le y} f([x,z])g([z,y]).$

An equivalent (really the dual) definition of I(P) is the following:

Definition 11 I(P) is the set of formal linear combinations of intervals $\sum_{[x,y]\in Int(P)} f([x,y])[x,y]$.

with multiplication

$$[x,y][z,w] = \begin{cases} [x,w], & y=z\\ 0, & \text{otherwise.} \end{cases}$$
 (1)

We can check that

$$\left(\sum_{[x,y]\in\operatorname{Int}(P)} f([x,y])[x,y]\right) \left(\sum_{[z,w]\in\operatorname{Int}(P)} g([z,w])[z,w]\right)$$

$$= \sum_{[x,y],[z,w]\in\operatorname{Int}(P)} f([x,y])g([z,w])\underbrace{[x,y][z,w]}_{0 \text{ unless } y=z}$$

$$= \sum_{x\leq y\leq w} f([x,y])g([y,w])[x,w]$$

$$= \sum_{[x,w]\in\operatorname{Int}(P)} f([x,y])g([y,z])[x,w].$$

Another equivalent definition involves matrices. Let the elements of P be $\{x_1, \ldots, x_n\}$. Then:

Definition 12 $I(P) = \{n \times n \text{ matrices } A \mid a_{ij} \in K, a_{ij} = 0 \text{ unless } x_i \leq x_j \}.$

So each interval $[x_i, x_j]$ with $x_i \leq x_j$ is represented as the matrix e_{ij} with just one nonzero entry a_{ij} .

Example 13 $P = \mathbf{n}$. Then I(P) is the set of upper triangular $n \times n$ matrices.

Example 14
$$P = B_2$$
. Then $I(P)$ looks like $\begin{pmatrix} * & * & * & * \\ 0 & * & 0 & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$, where * denotes a nonzero element of K .

3.2 ζ and 1; more chain-counting

Two important elements of I(P) are the zeta element ζ and the identity, 1.

Definition 15 $\zeta([x,y]) = 1 \forall [x,y] \in Int(P)$.

Example 16

$$\zeta^2([x,y]) = \sum_{x < z < y} \zeta([x,z])\zeta([z,y]) = \#\{[x,y] \in \mathit{Int}(P)\}.$$

Example 17

$$\zeta^{k}([x,y]) = \sum_{x=z_{0} \leq \dots \leq z_{k}=y} \prod_{i=1}^{k} \zeta([z_{i-1}, z_{i}]) = \sum_{x=z_{0} \leq \dots \leq z_{k}=y} 1$$

, so $\zeta^{k}([x,y]) = \#\{\text{multichains } x = z_{0} \leq z_{1} \leq \ldots \leq z_{k} = y.\}$

Definition 18 $1([x,y]) = \delta_{xy} = \begin{cases} 1, & x = y, \\ 0, & otherwise. \end{cases}$

Now consider $(\zeta - 1) \in I(P)$; we have $(\zeta - 1)([x, y]) = \begin{cases} 0, & x = y, \\ 1, x \neq y. \end{cases}$. So

$$(\zeta - 1)^k([x, y]) = \sum_{x = z_0 \le \dots \le z_k = y} (\zeta - 1)([z_{i-1}, z_i])$$

which counts precisely the number of chains $x = z_0 < z_1 < \ldots < z_k = y$.

Using this result, we have the following:

Lemma 19 $(2 - \zeta)$ is invertible in I(P), and $(2 - \zeta)^{-1}([x, y]) = \#\{chains from x to y, regardless of length.\}$

Proof: We use the matrix definition of I(P); we have $f([x,x]) \neq 0 \forall x \in P \Leftrightarrow f$ is invertible. So since $(2-\zeta)([x,y]) = \begin{cases} 1, & x=y, \\ -1, & x < y \end{cases}$, $2-\zeta$ is invertible. Now let $r = \operatorname{rank} P$; since $(\zeta-1)^k$ counts the number of chains of length k+1, we must have $(\zeta-1)^r=0$. But

$$(1 + (\zeta - 1) + (\zeta - 1)^2 + \ldots + (\zeta - 1)^{r-1}) (1 - (1 - \zeta)) = 1 - (\zeta - 1)^r = 1,$$

so the inverse of $2-\zeta$ is $1+(\zeta-1)+(\zeta-1)^2+\ldots+(\zeta-1)^{r-1}$, which (when applied to the interval [x,y]) is the total number of chains of any length from x to y.

3.3 For next time...

Claim. $f^{-1}([x,y])$ depends only on the poset structure of [x,y].

Definition 20 The Möbius element $\mu \in I(P)$ is defined by $\mu = \zeta^{-1}$.