18.312: Algebraic Combinatorics

Lionel Levine

Problem Set 3

Due at the beginning of class on Feb 24, 2011

P9 Find a linear recurrence satisfied by the sequence $\{S(n,3)\}_{n\geq 3}$.

• • • • •

P10 Give an example (with proof) of a sequence that does not satisfy any linear recurrence.

• • • • •

P11 Let $k \ge 1$ be an integer, and let $\omega = e^{2\pi i/k}$. Prove that any sequence of complex numbers a_0, a_1, a_2, \ldots that is periodic with period k (that is, $a_{n+k} = a_n$ for all $n \ge 0$) can be written in the form

$$a_n = c_0 + c_1 \omega^n + c_2 \omega^{2n} + \ldots + c_{k-1} \omega^{(k-1)n}$$

for some constants $c_0, \ldots, c_{k-1} \in \mathbb{C}$.

.

P12 Let f(n) be the number of ways to make n cents out of pennies, nickels, dimes and quarters. For example, f(10) = 4 (10 pennies, or 5 pennies and 1 nickel, or 2 nickels, or 1 dime).

- (a) Show that $\sum_{n\geq 0} f(n)x^n = \frac{1}{1-x} \frac{1}{1-x^5} \frac{1}{1-x^{10}} \frac{1}{1-x^{25}}$.
- (b) Write down a linear recurrence that f(n) satisfies.
- (c) Prove that $f(50n) = an^3 + bn^2 + cn + 1$ for some constants a, b, c.

.

P13 If a_n satisfies a linear recurrence of order k, and b_n satisfies a linear recurrence of order ℓ , show that

- $a_n + b_n$ satisfies a linear recurrence of order $k + \ell$.
- a_nb_n satisfies a linear recurrence of order $k\ell$.
- a_n^2 satisfies a linear recurrence of order $\binom{k+1}{2}$.

.

P14 Find the values of the infinite series

$$\sum_{n=1}^{\infty} \frac{F_n}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{5}{32} + \frac{8}{64} + \frac{13}{128} + \dots$$

and

$$\sum_{n=1}^{\infty} \frac{F_n}{n!} = 1 + \frac{1}{2} + \frac{2}{6} + \frac{3}{24} + \frac{5}{120} + \frac{8}{720} + \frac{13}{5040} + \dots$$

.