18.312: Algebraic Combinatorics

Lionel Levine

Problem Set 6

Due at the beginning of class on Thursday April 14, 2011

P26

- (a) Let C_n be the cycle graph with vertex set [n] and edge set $\{(1,2),(2,3),\ldots,(n-1,n),(n,1)\}$. Find the chromatic polynomial of C_n .
- (b) Let $H_{ij} = \{(x, \dots, x_n) \in \mathbb{R}^n \mid x_i = x_j\}$. Find the number of connected components of $\mathbb{R}^n (H_{12} \cup H_{23} \cup \dots \cup H_{n1})$.

.

P27 Let X be a set of cardinality n, and let $0 \le k \le n/2$. Prove that there is a bijection f from subsets of cardinality k to subsets of cardinality n - k

$$f: \left(\begin{array}{c} X\\ k \end{array}\right) \to \left(\begin{array}{c} X\\ n-k \end{array}\right)$$

such that $S \subset f(S)$ for all sets $S \in \begin{pmatrix} X \\ k \end{pmatrix}$.

• • • • •

P28 Let G = (V, E) be a graph (not necessarily bipartite) such that $|\Gamma(A)| \ge |A|$ for all $A \subset V$. Prove that there exists a permutation σ of V such that $(v, \sigma v) \in E$ for all $v \in V$.

.

P29 Let $k \in \mathbb{N}$, and let G = (V, E) be a k-regular bipartite graph (every vertex lies on k edges). Prove that the edge set E can be partitioned into k disjoint perfect matchings.