| Let's try to model English text as a Markov chain with states $\{a,b,c,d,\ldots,z,\text{space}\}$ (we ignore numbers and punctuation). | |--| | 1 Estimate the transition probabilities $p(q, u)$, $p(\text{space}, u)$ and $p(u, \text{space})$. | | •••• | | 2 Estimate the probability that the first 6 letters spell out "markov", given that $X_0 = m$. | | ••••• | | 3 Estimate $\pi(a)$, $\pi(z)$ and $\pi(\text{space})$. Describe applications to Scrabble. | | ••••• | | 4 Estimate $E_{\text{space}}(T_{\text{space}})$. | | •••• | | 5 How would you estimate the transition probabilities from real-world data? | | ••••• | | 6 Write down a plausible sequence $(X_0, X_1, \dots, X_{10})$. Does it look like English? | | ••••• | | 7 Invent a more accurate model of English text. (It might or might not be a Markov chain!) | | |