- 1. **Sampling** from a probability measure μ means generating a random variable X whose distribution is μ . Suppose your only source of randomness is a fair coin, which you may flip as many times as you like (even a countably infinite number of times). That is, you can sample independent Bernoulli(1/2) random variables X_1, X_2, \ldots Explain how to use the X_i to sample from the following distributions:
 - (a) Unif(0,1)
 - (b) Exp(1)
 - (c) Bernoulli(p) for 0
 - (d) Unif (S_n) (the uniform distribution on permutations of $\{1,\ldots,n\}$)

OPTIONAL: To avoid getting the impression that sampling is always easy, you might enjoy thinking about how to sample from

- (e) The uniform distribution on the *n*-dimensional unit ball $B = \{x \in \mathbb{R}^n : \sum x_i^2 < 1\}$.
- (f) The uniform distribution on spanning trees of a given finite graph G.
- (g) The uniform distribution on acyclic orientations of G which have a unique sink.

You do not need to hand in parts (e)-(g)!

- 2. Fix b > 0 and let $X_n = \prod_{i=1}^n U_i$ where U_1, U_2, \ldots are i.i.d. Unif(0, b) random variables.
 - (a) Prove that $\frac{\log X_n}{n} \to c$ a.s. for some constant c = c(b).
 - (b) Prove that there is a $\beta > 0$ such that $X_n \to 0$ a.s. if $b < \beta$ and $X_n \to \infty$ a.s. if $b > \beta$. Find β .
 - (c) Suppose b = 2.5 and you are offered a deal which returns X_{1000} dollars tomorrow for an initial investment of \$1000 today. What is your expected gain? Explain why you would or would not take the deal.
- 3. Let $S_n = X_1 + \ldots + X_n$ be simple random walk in \mathbb{Z} . In class we proved that S_n/\sqrt{n} converges weakly to a N(0,1) random variable. Prove that S_n/\sqrt{n} does not converge in probability to any random variable.
- 4. (a) If $X \stackrel{d}{=} X'$ and $Y \stackrel{d}{=} Y'$ does it follow that $(X, Y) \stackrel{d}{=} (X', Y')$?
 - (b) If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y'$, does it follow that $X_n + Y_n \xrightarrow{d} X + Y$?
- 5. Exercises 3.2.1, 3.2.12, 3.2.13 (compare to part b of the previous problem!), 3.3.1 in Durrett.