Let G = (V, E) be a finite connected graph. The Ising, Potts, and Random Cluster measures are defined respectively on spin configurations $\eta \in \{-1, 1\}^V$, color configurations $\sigma \in \{1, \dots, q\}^V$, and percolation configurations $\omega \in \{0, 1\}^E$, by the formulas

$$\frac{1}{Z_I} e^{-\alpha H_I(\eta)}, \quad \frac{1}{Z_P} e^{-\beta H_P(\sigma)}, \quad \frac{1}{Z_{RC}} \prod_{(x,y) \in E} p^{\omega(x,y)} (1-p)^{1-\omega(x,y)} q^{k(\omega)}$$

where $H_I(\eta) = -\sum_{(x,y)\in E} \eta_x \eta_y$ and $H_P(\sigma) = -\sum_{(x,y)\in E} 1\{\sigma_x = \sigma_y\}$, and $k(\omega)$ is the number of clusters (connected components of the graph $(V, \omega^{-1}(1))$).

- 1. In class we showed that as $p, q \downarrow 0$ with p = q, the random cluster measure converges to the uniform spanning forest of G. This problem is about other limits (some more interesting than others!) Remember that the normalizing constant Z_{RC} depends on p and q; and Z_P depends on β and q.
 - (a) What is the limit of the random cluster measure as $p, q \downarrow 0$ with $q/p \rightarrow 0$?
 - (b) What is the limit of the random cluster measure as $p, q \downarrow 0$ with $p/q \rightarrow 0$?
 - (c) What is the limit of the Potts measure as $\beta \to -\infty$?
 - (d) What is the limit of the Potts measures as $\beta \to +\infty$?
- 2. Let q=2 and $p=1-e^{-\beta}$. This problem comes from Hugo Duminil-Copin's lecture notes on the Ising and Potts models.
 - (a) Find a change of variables that transforms the Ising measure into the q=2 Potts measure.
 - (b) Using the coupling of Potts and random cluster measures, show that for any $x, y \in V$,

$$\mathbb{E}(\eta_x \eta_y) = \mathbb{P}\{x \text{ and } y \text{ belong to the same cluster of } \omega\}.$$

Here and in the rest of this problem, expectations \mathbb{E} refer to the Ising measure and probabilities \mathbb{P} refer to the random cluster measure.

(c) Show that for any subset A of V,

$$\mathbb{E}\left(\prod_{x\in A}\eta_x\right)=\mathbb{P}\{\text{every cluster of }\omega\text{ intersects }A\text{ in a set of even cardinality}\}.$$

(d) Show that for any subsets A and B of V,

$$\mathbb{E}\left(\prod_{x\in A\cup B}\eta_x\right)\geq \mathbb{E}\left(\prod_{x\in A}\eta_x\right)\,\mathbb{E}\left(\prod_{x\in B}\eta_x\right).$$

This is known as the second Griffiths inequality.

Due Friday March 23 page 1 of 2

- 3. Comparison of *p*-norms, $1 \le p < \infty$.
 - (a) Let π be a probability measure on a finite set V. For $f: V \to \mathbb{R}$, define

$$||f||_{p,\pi} = \left(\sum_{x \in V} |f(x)|^p \pi(x)\right)^{1/p}.$$

Show that $||f||_{p,\pi}$ is nondecreasing in p.

- (b) $(\ell^p \text{ space})$ Show that for sequences $x = (x_1, x_2, \ldots)$ of real numbers, the inequality goes the opposite way: $||x||_p := \left(\sum_{n\geq 1} |x_n|^p\right)^{1/p}$ is <u>nonincreasing</u> in p.
- (c) $(L^p([0,1])$ Which way does the inequality go for functions on [0,1], with $||f||_p := (\int |f|^p)^{1/p}$?
- (d) $(L^p([0,\infty))$ Show that <u>neither</u> inequality holds if we replace [0,1] by $[0,\infty)$.
- 4. Let $(M_n)_{n\geq 0}$ be a martingale such that $\mathbb{E}M_n^2 < \infty$ for all n.
 - (a) Prove that the increments of M are uncorrelated:

$$\mathbb{E}[(M_{k+1} - M_k)(M_{n+1} - M_n)] = 0 \quad \text{for all } 0 \le k < n.$$

(b) Let $A_n = \sum_{k=0}^{n-1} E[(M_{k+1} - M_k)^2 | \mathcal{F}_k]$ be the quadratic variation of M. Prove a strong law of large numbers,

$$\frac{M_n(\omega)}{A_n(\omega)} \to 0$$
 for a.e. ω such that $A_n(\omega) \to \infty$.

Hand in **any three** of problems 1–4 above, plus **any three** of the following exercises from Levin and Peres: 2.5, 2.6, 4.3, 4.4, 12.1ab, 12.2, 12.7 (the definition of e(A, B) is missing $|\cdot|$ for cardinality), plus **any three** of the following exercises from Lyons and Peres: 5.20, 5.23, 5.25, 5.28, 5.33, 5.62, 5.64.