Chip-Firing and A Devil's Staircase

Lionel Levine (MIT)

FPSAC, July 21, 2009

Talk Outline

- Mode locking in dynamical systems.
- ► Discrete: parallel chip-firing.
- ▶ Continuous: iteration of a circle map $S^1 \rightarrow S^1$.
- ▶ How the devil's staircase arises.
- Short period attractors.

Mode Locking in Dynamical Systems

- "Weakly coupled oscillators tend to synchronize their motion, i.e. their modes of oscillation acquire Z-linear dependencies."
 - ▶ J. C. Lagarias, 1991.
- Examples:
 - Huygens' clocks.
 - Solar system (rotational periods of moons and planets).
 - Biological oscillators: pacemaker cells, fireflies.
 - **...**
- ► Parallel chip-firing: A combinatorial model of mode locking.

Parallel Chip-Firing on K_n

- ▶ At time t, each vertex $v \in [n]$ has $\sigma_t(v)$ chips
- ▶ If $\sigma_t(v) \ge n$, the vertex v is unstable, and fires by sending one chip to every other vertex.
- ► Parallel update rule: At each time step, all unstable vertices fire simultaneously:

$$\sigma_{t+1}(v) = \begin{cases} \sigma_t(v) + u_t, & \text{if } \sigma_t(v) \leq n-1 \\ \sigma_t(v) - n + u_t, & \text{if } \sigma_t(v) \geq n \end{cases}$$

where

$$u_t = \#\{v | \sigma_t(v) \ge n\}$$

is the number of unstable vertices at time t.

Parallel vs. Ordinary Chip-Firing

- ▶ In ordinary chip-firing (**Björner-Lovász-Shor**, **Biggs**, ...) one vertex is singled out as the sink. The sink is not allowed to fire.
- ▶ In parallel chip-firing, all vertices are allowed to fire.
 - \Rightarrow The system may never reach a stable configuration.
- Instead of studying properties of the final configuration, we study properties of the dynamics.

The activity of a chip configuration

▶ Object of interest: The **activity** of σ is defined as

$$a(\sigma) = \lim_{t \to \infty} \frac{\alpha_t}{nt}$$

where

$$\alpha_t = u_0 + \ldots + u_{t-1}$$

is the total number of firings before time t.

▶ Since $0 \le \alpha_t \le nt$, we have $0 \le a(\sigma) \le 1$.

An Example on K_{10}

► Period 3, activity 1/3.

► Period 2, activity 1/2.

How Does Adding More Chips Affect the Activity?

3	3	4	4	5	5	6	6	7	7	activity 0
4	4	5	5	6	6	7	7	8	8	activity 0
5	5	6	6	7	7	8	8	9	9	activity 0
6	6	7	7	8	8	9	9	10	10	activity $1/3$
7	7	8	8	9	9	10	10	11	11	activity $1/2$
8	8	9	9	10	10	11	11	12	12	activity $1/2$
9	9	10	10	11	11	12	12	13	13	activity $\frac{2}{3}$
10	10	11	11	12	12	13	13	14	14	activity 1
11	11	12	12	13	13	14	14	15	15	activity 1
12	12	13	13	14	14	15	15	16	16	activity 1

An Example on K_{100}

- ► Let $\sigma = (25\ 25\ 26\ 26\ \dots 74\ 74)$ on K_{100} .

An Example on K_{1000}

▶ Let $\sigma = (250\ 250\ 251\ 251\ \dots\ 749\ 749)$ on K_{1000} .

```
(a(\sigma+k))_{k=0}^{1000} =
```

..... K_{10} K_{100}

Questions

- ▶ Why such small denominators?
- ▶ Is there a limiting behavior as $n \to \infty$?

The Large *n* Limit

- ▶ Sequence of stable chip configurations $(\sigma_n)_{n\geq 2}$ with σ_n defined on K_n .
- ▶ Activity phase diagram $s_n : [0,1] \rightarrow [0,1]$

$$s_n(y) = a(\sigma_n + |ny|).$$

▶ Main hypothesis: \exists continuous $F:[0,1] \rightarrow [0,1]$, such that for all 0 < x < 1

$$\frac{1}{n} \# \{ v \in [n] \, | \, \sigma_n(v) < nx \} \to F(x)$$

as $n \to \infty$.

Main Result: The Devil's Staircase

▶ **Theorem** (LL, 2008): There is a continuous, nondecreasing function $s:[0,1] \to [0,1]$, depending on F, such that for each $y \in [0,1]$

$$s_n(y) \to s(y)$$
 as $n \to \infty$.

Moreover

- ▶ If $y \in [0,1]$ is irrational, then $s^{-1}(y)$ is a point.
- For "most" choices of F, the fiber $s^{-1}(p/q)$ is an interval of positive length for each rational number $p/q \in [0,1]$.
- ▶ So for most *F*, the limiting function *s* is a *devil's staircase*: it is locally constant on an open dense subset of [0,1].
- Stay tuned for:
 - ▶ The construction of s.
 - ▶ What "most" means.

From Chip-Firing to Circle Map

- Call σ confined if
 - ▶ $\sigma(v) \le 2n-1$ for all vertices v of K_n ;
 - $ightharpoonup \max_{v} \sigma(v) \min_{v} \sigma(v) \le n 1.$
- ▶ **Lemma**: If $a(\sigma_0) < 1$, then there is a time T such that σ_t is confined for all $t \ge T$.

Which Vertices Are Unstable At Time *t*?

Let

$$\alpha_t = u_0 + \ldots + u_{t-1}$$

be the total number of firings before time t.

▶ **Lemma**: If σ is confined, then v is unstable at time t if and only if

$$\sigma(v) \equiv -j \pmod{n}$$
 for some $\alpha_{t-1} < j \le \alpha_t$.

► Proof uses the fact that for any two vertices *v*, *w*, the difference

$$\sigma_t(v) - \sigma_t(w) \mod n$$

doesn't depend on t.

A Recurrence For The Total Activity

Get a three-term recurrence

$$\alpha_{t+1} = \alpha_t + \sum_{j=\alpha_{t-1}+1}^{\alpha_t} \phi(j)$$

where

$$\phi(j) = \#\{v \mid \sigma(v) \equiv -j \pmod{n}\}.$$

... which telescopes to a two-term recurrence:

$$egin{aligned} lpha_{t+1} - lpha_1 &= \sum_{s=1}^t \left(lpha_{s+1} - lpha_s
ight) \ &= \sum_{s=1}^t \sum_{j=lpha_{t-1}+1}^{lpha_t} \phi(j) = \sum_{j=1}^{lpha_t} \phi(j). \end{aligned}$$

Iterating A Function $\mathbb{N} \to \mathbb{N}$

 $ightharpoonup lpha_{t+1} = f(\alpha_t)$, where

$$f(k) = \alpha_1 + \sum_{j=1}^k \phi(j).$$

Note that

$$f(k+n) = f(k) + \sum_{j=k+1}^{k+n} \phi(j)$$

$$= f(k) + \sum_{j=k+1}^{k+n} \#\{v \mid \sigma(v) \equiv -j \pmod{n}\}$$

$$= f(k) + n.$$

▶ So f - Id is periodic.

Circle Map

Renormalizing and interpolating

$$g(x) = \frac{(1 - \{nx\})f(\lfloor nx \rfloor) + \{nx\}f(\lceil nx \rceil)}{n}$$

yields a continuous function $g: \mathbb{R} \to \mathbb{R}$ satisfying

$$g(x+1) = g(x) + 1.$$

▶ So g descends to a circle map $S^1 \rightarrow S^1$ of degree 1.

The Poincaré Rotation Number of a Circle Map

- ▶ Suppose $g : \mathbb{R} \to \mathbb{R}$ satisfies g(x+1) = g(x) + 1.
- ▶ The **rotation number** of g is defined as the limit

$$\rho(g) = \lim_{t \to \infty} \frac{g^t(x)}{t}.$$

- ▶ If *g* is continuous and nondecreasing, then this limit exists and is independent of *x*.
- ▶ If g has a fixed point, then $\rho(g) = ?0$. What about the converse?

Periodic Points and Rotation Number

▶ More generally, for any rational number p/q

$$\rho(g) = \frac{p}{q}$$
 if and only if $g^q - p$ has a fixed point.

Chip-Firing Activity and Rotation Number

- We've described how to construct a circle map g from a chip configuration σ .
- ▶ Lemma: $a(\sigma) = \rho(g)$.
- ▶ **Proof**: By construction, $\alpha_t/n = g^t(0)$, so

$$a(\sigma) = \lim_{t \to \infty} \frac{\alpha_t}{nt} = \lim_{t \to \infty} \frac{g^t(0)}{t} = \rho(g).$$

Devil's Staircase Revisited

- ▶ Sequence of stable chip configurations $(\sigma_n)_{n\geq 2}$ with σ_n defined on K_n .
- ▶ Recall: we assume there is a continuous function $F: [0,1] \rightarrow [0,1]$, such that for all $0 \le x \le 1$

$$\frac{1}{n} \# \{ v \in [n] \, | \, \sigma_n(v) < nx \} \to F(x)$$

as $n \to \infty$.

ightharpoonup Extend F to all of \mathbb{R} by

$$F(x+m) = F(x) + m, \qquad m \in \mathbb{Z}, x \in [0,1].$$

(Since F(0) = 0 and F(1) = 1, this extension is continuous.)

Devil's Staircase Revisited

▶ **Theorem**: For each $y \in [0,1]$

$$s_n(y) \to s(y) := \rho(R_y \circ G)$$
 as $n \to \infty$,

where G(x) = -F(-x), and $R_{y}(x) = x + y$. Moreover,

- s is continuous and nondecreasing.
- ▶ If $y \in [0,1]$ is irrational, then $s^{-1}(y)$ is a point.
- ▶ If

$$(\bar{R_y} \circ \bar{G})^q \neq Id: S^1 \rightarrow S^1$$

for all $y \in S^1$ and all $q \in \mathbb{N}$, then the fiber $s^{-1}(p/q)$ is an interval of positive length for each rational number $p/q \in [0,1]$.

Different choices of F give different staircases s(y):

Properties of the Rotation Number

- ► **Continuity**. If $\sup |f_n f| \to 0$, then $\rho(f_n) \to \rho(f)$. $\Rightarrow s_n \to s$, and s is continuous.
- ▶ Monotonicity. If $f \le g$, then $\rho(f) \le \rho(g)$.
 - \Rightarrow s is nondecreasing.
- ▶ Instability of an irrational rotation number. If $\rho(f) \notin \mathbb{Q}$, and $f_1 < f < f_2$, then $\rho(f_1) < \rho(f) < \rho(f_2)$.
 - \Rightarrow If $y \notin \mathbb{Q}$, then $s^{-1}(y)$ is a point.

Stability of a rational rotation number

▶ If $\rho(f) = p/q \in \mathbb{Q}$, and

$$\bar{f}^q \neq Id: S^1 \rightarrow S^1$$

then for sufficiently small $\varepsilon > 0$, either

$$\rho(g) = p/q$$
 whenever $f \le g \le f + \varepsilon$,

or

$$\rho(g) = p/q$$
 whenever $f - \varepsilon \le g \le f$.

 \Rightarrow The fiber $s^{-1}(p/q)$ is an interval of positive length.

Short Period Attractors

- ▶ **Lemma**: If $a(\sigma) = p/q$ in lowest terms, then σ has eventual period q (i.e. $\sigma_{t+q} = \sigma_t$ for all sufficiently large t).
- From the main theorem, it follows that for each $q \in \mathbb{N}$, at least a constant fraction $c_q n$ of the n states $\sigma_n, \sigma_n + 1, \dots \sigma_n + n 1$ have eventual period q.
- ► Curiously, there is also an exclusively period-two window: if the total number of chips is strictly between $n^2 n$ and n^2 , then σ must have eventual period 2.

What About Other Graphs?

- Parallel chip-firing on the torus Z/n × Z/n: F. Bagnoli, F. Cecconi, A. Flammini, A. Vespignani (Europhys. Lett. 2003).
 - ▶ Started with $m = \lambda n^2$ chips, each at a uniform random vertex.
 - \triangleright Ran simulations to find the expected activity as a function of λ .
 - ► They found a devil's staircase!
- ▶ Is there a circle map hiding here somewhere??

Thank You!

