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Let m and n be positive integers. The internal erosion of the interval
I = [−m,n] ⊂ Z is the random interval formed by starting a simple random
walk at 0 and stopping when the walk hits one of the two endpoints {−m,n},
then removing that endpoint from I to obtain one of the intervals [1−m,n]
or [−m,n − 1]. Suppose we iterate this erosion procedure until the origin
itself is eroded; how large is the interval that remains?

We can view the erosion process as a Markov chain whose state space is
the set of intervals [−m,n] with m,n ≥ 0. The states with m = 0 or n = 0
are absorbing, and the transition probabilities for the remaining states are
given by the classical gambler’s ruin problem:

P ([m,n], [m,n− 1]) =
m

m+ n
.

Alternatively, imagine two urns containing m and n balls, respectively. At
each time step, we choose a ball at random, then remove a ball from the
other urn. When one of the urns runs out of balls, how many balls remain
in the other urn? As we have already given away in our title, if m = n, the
answer is “about n3/4.” The proof below is due to Kingman and Volkov [4].

Theorem 1. Starting from the interval [−n, n], let R(n) be the number of
sites remaining when the origin is eroded. Then as n→∞

R(n)
n3/4

=⇒
(

8
3

)1/4√
|Z| (1)

where Z is a standard Gaussian.

Here =⇒ denotes convergence in distribution; that is, Wn =⇒ W if

P(Wn ≥ x)→ P(W ≥ x)

for all x where the right side is continuous.
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Proof. We rephrase our model in terms of exponential variables [2]. For each
integer j ≥ 1, let Xj , Yj be independent exponentially distributed random
variables with mean j. For each j, replace the edge (j − 1, j) by a rod of
length Xj , and the edge (−j, 1 − j) by a rod of length Yj . Viewing the
entire interval [−n, n] as a single rod, let the two ends burn continuously at
a constant rate. Note that

P(Xj > Yk) =
j

j + k
= P ([−j, k], [−j, k − 1]).

By the “memoryless” property of exponentials (i.e., the fact that Xj − Yk,
conditioned to be nonnegative, has the same distribution as Xj), the set of
integer sites remaining when the origin burns has the same distribution as
R(n).

When the origin burns, the remaining rod has length

Ln =

∣∣∣∣∣∣
n∑
j=1

Xj −
n∑
j=1

Yj

∣∣∣∣∣∣ .
We have

Var

 n∑
j=1

Xj −
n∑
j=1

Yj

 = 2
n∑
j=1

j2 =
2n3

3
+O(n2),

and it is easy to check that the hypotheses of the Lindeberg central limit
theorem [1, Ch. 2, (4.5)] apply. Thus

Ln

n3/2
=⇒

√
2
3
|Z| (2)

where Z is a standard Gaussian.
Now write Sk = Y1 + . . . + Yk. Conditional on Sn > X1 + . . . + Xn, we

have
SR(n) ≤ Ln < SR(n)+1. (3)

Note that

P(YR(n)+1 > y) ≤
n∑
j=1

P(Yj > y) ≤ n P (Yn > y) = ne−y/n.

Taking y = cn3/2 we obtain n−3/2YR(n)+1 → 0 a.s. Scaling (3) by n−3/2, we
obtain from (2)

SR(n)

n3/2
=⇒

√
2
3
|Z|. (4)
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In particular, SR(n) =⇒ ∞ and hence R(n) =⇒ ∞. By the strong law of
large numbers for non-identically distributed random variables [6, 16.3.II.A],
we have Sk/k2 → 1

2 , a.s., hence

SR(n)/n
3/2

R(n)2/n3/2
=
SR(n)

R(n)2
=⇒ 1

2
.

From [1, Ex. 2.11] we conclude that

R(n)2

n3/2
=⇒

√
8
3
|Z|.

In the case of an asymmetric interval, we obtain a strong law for the
number of sites remaining when the origin is eroded.

Theorem 2. Fix a real number a > 1. Starting from the interval [n, banc],
let R(n) be the number of sites remaining when the origin is eroded. Then
as n→∞

R(n)
n
→
√
a2 − 1, a.s.

Proof. Rephrasing using exponentials as in the proof of Theorem 1, the
remaining rod when the origin burns has length |Ln|, where

Ln =
banc∑
j=1

Yj −
n∑
j=1

Xj .

Since

ELn =
a2n2

2
− n2

2
+O(n),

by the strong law of large numbers we have

Ln
n2
→ a2 − 1

2
, a.s.

In particular, with probability 1 we have Ln ≥ 0 for all sufficiently large n.
Writing Sk = Y1 + . . .+ Yk, for sufficiently large n we have

|Ln − SR(n)|
n2

≤
YR(n)+1

n2
→ 0, a.s.

It follows that
SR(n)

n2
→ a2 − 1

2
, a.s.
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Figure 1: Internal erosion of a box of side length 500 and a disk of radius
250 in Z2.

In particular, SR(n) →∞ a.s. and hence R(n)→∞ a.s. Thus by the strong
law,

SR(n)

R(n)2
→ 1

2
, a.s.

Combining the previous two lines, we obtain (R(n)/n)2 → a2 − 1, a.s.

It is natural to consider internal erosion in a higher-dimensional setting.
Given a finite set A ⊂ Zd containing the origin, we can successively erode
points from A by starting a simple random walk at the origin and stopping
when the walk reaches a point adjacent to the complement of A, then remov-
ing that point from A. The process stops when the origin itself is eroded.
Pictured in Figure 1 are the results when A is a box and a disk in Z2.

At first glance, our internal erosion model seems similar to internal
diffusion-limited aggregation (internal DLA), defined by starting a random
walk at the origin and stopping when it exits the set A, then adjoining
that point to A. However, the behavior of internal DLA is quite different:
Lawler, Bramson and Griffeath [5] show that in the limit as A becomes large,
it approaches a ball. Internal DLA exhibits none of the fractal-type growth
seen in Figure 1. Rather, our internal erosion model can be regarded as an
“inversion” of the classical model of diffusion-limited aggregation (DLA), in
which a cluster of sites in Z2 initially consisting only of the origin grows
as random walkers coming “from infinity” stick when they reach a point
adjacent to the cluster. DLA is famously difficult to analyze rigorously. In
particular, it is believed, but not proved, that the cluster reaches distance r
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from the origin after some number rα of particles have aggregated, for some
exponent α < 2. A theorem of Kesten [3] says that α ≥ 3

2 . The analogous
problem in our setting is to prove that the number of sites eroded from a disk
of radius r when the origin becomes eroded grows like rα for some α < 2.
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[6] M. Loève, Probability Theory, 2nd ed., D. Van Nostrand Co., 1955.

5


