An algebraic analogue of a formula of Knuth

Lionel Levine

(MIT)

FPSAC, San Francisco,

August 6, 2010

Talk Outline

- ▶ Knuth's formula: generalizing n^{n-1} .
- ... with weights: generalizing $(x_1 + ... + x_n)^{n-1}$.
- ▶ ... with group structure: generalizing $(\mathbb{Z}/n\mathbb{Z})^{n-1}$.
- Recent developments!

Starting Point: Cayley's Theorem

- ▶ The number of rooted trees on n labeled vertices is n^{n-1} .
- ▶ Refinement: The number of trees with degree sequence $(d_1,...,d_n)$ is the coefficient of $x_1^{d_1}...x_n^{d_n}$ in

$$nx_1...x_n(x_1+...+x_n)^{n-2}$$
.

We can break this out by root:

$$\sum_{r=1}^{n} \prod_{i \neq r} x_{i} \cdot x_{r}(x_{1} + ... + x_{n})^{n-2}$$
outdegrees indegrees

Oriented Spanning Trees

An oriented spanning tree of $K_{3,3}$.

- ▶ Let G = (V, E) be a finite directed graph.
- ▶ An oriented spanning tree of G is a subgraph T = (V, E') such that
 - one vertex, the root, has outdegree 0;
 - ▶ all other vertices have outdegree 1;
 - ▶ *T* has no oriented cycles $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$.

Complexity of A Directed Graph

The number

$$\kappa(G) = \#$$
 of oriented spanning trees of G

is sometimes called the *complexity* of *G*.

Examples:

$$\kappa(K_n) = n^{n-1}$$

$$\kappa(K_{m,n}) = (m+n)m^{n-1}n^{m-1}$$

$$\kappa(DB_n) = 2^{2^n-1}$$

The De Bruijn Graph DB_n

- vertices $\{0,1\}^n$, edges $\{0,1\}^{n+1}$.
- ▶ The endpoints of the edge $e = b_1 \dots b_{n+1}$ are its prefix and suffix:

$$b_1 \dots b_n \stackrel{e}{\longrightarrow} b_2 \dots b_{n+1}$$
.

Directed Line Graphs

- ightharpoonup G = (V, E): finite directed graph
- ightharpoonup s,t: $E \rightarrow V$
- ▶ Edge *e* is directed like this: $s(e) \stackrel{e}{\longrightarrow} t(e)$
- ▶ The directed line graph $LG = (E, E_2)$ of G has
 - ▶ Vertex set *E*, the edge set of *G*.
 - ► Edge set

$$E_2 = \{(e,f) \in E \times E \mid s(f) = t(e)\}.$$

$$\begin{array}{cccc}
\bullet \xrightarrow{e} \bullet \xrightarrow{f} \bullet & \bullet & \bullet \xrightarrow{e} \bullet \xrightarrow{f} \bullet & \bullet \xrightarrow{e} \bullet \\
(e, f) \in E_2 & (e, f) \notin E_2 & \bullet \xrightarrow{f} \bullet \\
& (e, f) \notin E_2
\end{array}$$

A Graph G and Its Directed Line Graph LG

Examples of Directed Line Graphs

- $ightharpoonup \vec{K}_n = \mathcal{L}(\text{one vertex with } n \text{ loops}).$
- ▶ $\vec{K}_{m,n} =$ $\mathcal{L}(\text{two vertices } \{a,b\} \text{ with } m \text{ edges } a \to b \text{ and } n \text{ edges } b \to a).$
- $\triangleright DB_n = \mathcal{L}(DB_{n-1}).$
- ▶ Iterated line graphs: $\mathcal{L}^n G = (E_n, E_{n+1})$, where

 $E_n = \{ \text{directed paths of } n \text{ edges in } G \}.$

Spanning Tree Enumerators

▶ Let $(x_v)_{v \in V}$ and $(x_e)_{e \in E}$ be indeterminates, and let

$$\kappa^{edge}(G, \mathbf{x}) = \sum_{T} \prod_{e \in T} x_e$$

$$\kappa^{vertex}(G, \mathbf{x}) = \sum_{T} \prod_{e \in T} x_{\mathsf{t}(e)}$$

The sums are over all oriented spanning trees T of G.

Example:

$$\kappa^{\text{vertex}}(K_n, \mathbf{x}) = (\mathbf{x}_1 + \dots + \mathbf{x}_n)^{n-1}.$$

Knuth's Formula

- ightharpoonup G = (V, E): finite directed graph with no sources
- \triangleright outdegrees a_1, \ldots, a_n
- ▶ indegrees $b_1, \ldots, b_n \ge 1$
- ► LG: the directed line graph of G
- ▶ Theorem (Knuth, 1967). For any edge e_* of G,

$$\kappa(\mathcal{L}G, e_*) = \alpha(G, e_*) \prod_{i=1}^n a_i^{b_i - 1}$$

where

$$lpha(\emph{G},\emph{e}_*) = \kappa(\emph{G},\mathtt{t}(\emph{e}_*)) - rac{1}{a_*} \sum_{\substack{\mathtt{t}(\emph{e}) = \mathtt{t}(\emph{e}_*) \eq \emph{e}_*}} \kappa(\emph{G},\mathtt{s}(\emph{e})).$$

and a_* is the outdegree of $t(e_*)$.

Weighted Knuth's Formula

- ▶ *G* : finite directed graph with no sources
- ► *LG* : its directed line graph
- ▶ $b_1, \ldots, b_n \ge 1$: the indegrees of G.
- ► Theorem (L.)

$$\kappa^{\text{vertex}}(\mathcal{L}G, \mathbf{x}) = \kappa^{\text{edge}}(G, \mathbf{x}) \prod_{i \in V} \left(\sum_{\mathbf{s}(e)=i} x_e\right)^{b_i - 1}.$$

▶ Both sides are polynomials in the edge variables x_e .

Specializing $x_e = 1$

Complexity of a line graph:

$$\kappa(\underline{L}G) = \kappa(G) \prod_{i=1}^{n} a_i^{b_i-1}.$$

- Examples:
 - ▶ G = one vertex with n loops, $LG = K_n$, get n^{n-1} .
 - $G = \text{two vertices}, \ LG = K_{m,n}, \ \text{get} \ (m+n)m^{n-1}n^{m-1}.$
 - $ightharpoonup G = DB_{n-1}$, $\mathcal{L}G = DB_n$:

$$\kappa(DB_n) = \kappa(DB_{n-1}) \cdot 2^{2^{n-1}}$$

$$= \kappa(DB_{n-2}) \cdot 2^{2^{n-1}} \cdot 2^{2^{n-2}}$$

$$= \dots$$

$$= 2^{2^n - 1}.$$

Rooted Version

- ▶ Fix an edge $e_* = (w_*, v_*)$ of G.
- ▶ Let b_* be the indegree of v_* .
- ▶ **Theorem** (L.) If $b_i \ge 1$ for all i, and $b_* \ge 2$, then

$$\kappa^{vertex}(\mathbf{LG}, e_*, \mathbf{x}) = x_{e_*} \kappa^{edge}(\mathbf{G}, w_*, \mathbf{x}) \frac{\prod_{i \in V} \left(\sum_{s(e) = i} x_e\right)^{b_i - 1}}{\sum_{s(e) = v_*} x_e}.$$

Matrix-Tree Theorem

$$\kappa^{edge}(G, \mathbf{x}) = [t] \det(t \cdot Id - \Delta^{edge}).$$

$$\kappa^{vertex}(G, \mathbf{x}) = [t] \det(t \cdot Id - \Delta^{vertex}).$$

▶ Goal: relate Δ_G^{edge} with Δ_{LG}^{vertex} .

The Missing Link: Directed Incidence Matrices

Consider the K-linear maps

$$\begin{array}{ll} A: \ K^E \to K^V, & B: K^V \to K^E \\ e \mapsto \mathtt{t}(e) & v \mapsto \sum_{\mathtt{s}(e) = v} \mathtt{x}_e e. \end{array}$$

Then

$$\Delta_G^{edge} = AB - D$$

$$\Delta_{LG}^{vertex} = BA - D^{L}$$

where D and $D^{\mathcal{L}}$ are the diagonal matrices

$$D(v) = \left(\sum_{s(e)=v} x_e\right) v, \qquad D^{\mathcal{L}}(e) = \left(\sum_{s(f)=t(e)} x_f\right) e.$$

Intertwining Δ_G^{edge} and Δ_{LG}^{vertex}

$$A\Delta_{\mathcal{L}G}^{\text{vertex}} = A(BA - D^{\mathcal{L}}) = ABA - DA = (AB - D)A = \Delta_{G}^{\text{edge}}A$$

In particular

$$\Delta_{\mathcal{L}G}^{\mathit{vertex}}(\ker A) \subset \ker A.$$

▶ Writing $K^E = \ker A \oplus \operatorname{Im}(A^T)$ puts Δ_{LG}^{vertex} in block triangular form.

The Proof Falls Into Place

- ▶ Since *G* has no sources, $A: K^E \to K^V$ is onto.
 - ► So AA^T has full rank.
 - ▶ So $A: Im(A^T) \rightarrow K^V$ is an isomorphism.
 - ► So $\det(\Delta_{\mathcal{L}G}^{vertex}|_{\mathrm{Im}(A^T)}) = \det\Delta_{G}^{edge} = \kappa(G, \mathbf{x}).$
- ► Eigenvalues of $\Delta_{LG}^{vertex}|_{\ker A}$ are $\sum_{s(e)=i} x_e$, each with multiplicity $b_i 1$.

Comparison with Knuth

Knuth's formula involved the strange quantity

$$lpha(extbf{G}, e_*) = \kappa(extbf{G}, exttt{t}(e_*)) - rac{1}{a_*} \sum_{egin{array}{c} exttt{t}(e) = exttt{t}(e_*) \ e
eq e} \kappa(extbf{G}, exttt{s}(e)).$$

▶ Why is it missing from our formulas?

The Unicycle Lemma

- ▶ A unicycle of *G* is an oriented spanning tree together with an outgoing edge from the root.
- ▶ By counting unicycles through v_* in two ways, we get:
- Lemma.

$$\kappa^{edge}(\textit{G},\textit{v}_*, \textcolor{red}{\textbf{x}}) \sum_{\texttt{s}(e) = \textit{v}_*} x_e = \sum_{\texttt{t}(e) = \textit{v}_*} \kappa^{edge}(\textit{G}, \texttt{s}(e), \textcolor{red}{\textbf{x}}) x_e.$$

► So Knuth's formula simplifies to

$$\kappa(\mathcal{L}G, e_*) = \frac{1}{a_*} \kappa(G, s(e_*)) \prod_{i=1}^n a_i^{b_i - 1}.$$

The Sandpile Group of a Graph

 $ightharpoonup K(G, v_*) \simeq \mathbb{Z}^{n-1}/\Delta \mathbb{Z}^{n-1}$, where

$$\Delta = D - A$$

is the **reduced Laplacian** of G.

- ► Lorenzini '89/'91 ("group of components"), Dhar '90, Biggs '99 ("critical group"), Baker-Norine '07 ("Jacobian").
 - Directed graphs: Holroyd et al. '08
- ► Matrix-tree theorem:

$$\#K(G, v_*) = \det \Delta = \#\{\text{spanning trees of } G \text{ rooted at } v_*\}.$$

▶ Choice of sink: $K(G, v_*) \simeq K(G, v_*')$ if G is Eulerian.

Maps Between Sandpile Groups

Theorem (L.) If G is Eulerian, then the map

$$\mathbb{Z}^E \to \mathbb{Z}^V$$
 $e \mapsto \mathsf{t}(e)$

descends to a surjective group homomorphism

$$K(\mathcal{L}G, e_*) \rightarrow K(G, t(e_*)).$$

Maps Between Sandpile Groups

Theorem (L.) If G is balanced k-regular, then the map

$$\mathbb{Z}^V \to \mathbb{Z}^E$$
$$v \mapsto \sum_{s(e)=v} e$$

descends to an isomorphism of groups

$$K(G) \simeq k K(LG)$$
.

► Analogous to results of **Berget**, **Manion**, **Maxwell**, **Potechin** and **Reiner** on <u>undirected</u> line graphs. arXiv:0904.1246

The Sandpile Group of DB_n

- ▶ De Bruijn Graph $DB_n = L^n$ (a single vertex with 2 loops).
- ► Theorem (L.)

$$K(DB_n) = \bigoplus_{j=1}^{n-1} (\mathbb{Z}/2^j\mathbb{Z})^{2^{n-1-j}}.$$

► Generalized by **Bidkhori and Kishore** to *k*-ary De Bruijn graphs for any *k*.

Equating Exponents

By counting spanning trees, we know that

$$\#K(DB_n) = \kappa(DB_n, v_*) = 2^{2^n - n - 1}.$$

Now write

$$K(DB_n) = \mathbb{Z}_2^{\mathbf{a}_1} \oplus \mathbb{Z}_4^{\mathbf{a}_2} \oplus \mathbb{Z}_8^{\mathbf{a}_3} \oplus \ldots \oplus \mathbb{Z}_{2^m}^{\mathbf{a}_m}$$

for some nonnegative integers m and a_1, \ldots, a_m satisfying

$$\sum_{j=1}^{m} j a_j = 2^n - n - 1. \tag{1}$$

By the previous theorem and inductive hypothesis

$$K(DB_{n-1}) \simeq 2K(DB_n)$$

$$\mathbb{Z}_2^{2^{n-3}} \oplus \mathbb{Z}_4^{2^{n-4}} \oplus \cdots \oplus \mathbb{Z}_{2^{n-2}} \simeq \mathbb{Z}_2^{a_2} \oplus \mathbb{Z}_4^{a_3} \oplus \ldots \oplus \mathbb{Z}_{2^{m-1}}^{a_m}.$$

So m = n - 1 and $a_i = 2^{n-j-1}$.

A (Formerly) Open Problem From EC1

▶ In EC1, Stanley asks for a bijection

```
{pairs of binary De Bruijn sequences of order n}

\uparrow

{all binary sequences of length 2^n}
```

▶ Both sets have cardinality 2²ⁿ.

Recent Developments

► In arXiv:0910.3442, **Bidkhori and Kishore** give a bijective proof of the weighted Knuth formula

$$\kappa^{\text{vertex}}(\mathcal{L}G, \mathbf{x}) = \kappa^{\text{edge}}(G, \mathbf{x}) \prod_{i \in V} \left(\sum_{\mathbf{s}(e)=i} x_e\right)^{b_i - 1}$$

and use it to solve Stanley's problem!

▶ Perkinson, Salter and Xu give a surjective map

$$K(\mathcal{LG}, e_*) \rightarrow K(\mathcal{G}, s(e_*))$$

even when G is not Eulerian.

Now What?

enumeration algebra

unweigntea	weighted
κ(<i>G</i>)	$\kappa(G, \mathbf{x})$
K(G)	?

الممعمانين الممعمانين مريان

Thank You!

References:

- D. E. Knuth, Oriented subtrees of an arc digraph,
 J. Comb. Theory 3 (1967), 309–314.
- ► L., Sandpile groups and spanning trees of directed line graphs, J. Comb. Theory A, to appear. arXiv:0906.2809