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If S is a set of vertices in a graph G, let d(S) be the number of vertices
in G adjacent to at least one member of S. The following result is known as
Phillip Hall’s marriage theorem.

Proposition 1 (Hall, 1935). Suppose A, B, |A| = |B| = n are the parts
of a bipartite graph with the property that |d(S)| > |S| for every S C A.

Then there exists a bijection f : A — B such that a is adjacent to f(a) for
all a € A.

Proof. Induct on n. Suppose first that there exists a proper subset
S C A such that |d(S)| = |S|. Then for any T'C A\S we have

|d(T) N (B\d(5))| = [d(S UT)| = |d(5)] = [T,

so the induced bipartite graph on A\S, B\d(S) also satisfies the hypothesis
of the proposition. Inductively, we obtain bijections S — d(S) and A\S —
B\d(S).

If, on the other hand, there is no proper S C A such that |d(S)| = |S],
choose any adjacent pair a € A and b € B. Given any T' C A\{a}, we have

|d(T) N (B\{b})| = [d(T)] -1 > |T].

Inductively, we obtain a bijection f : A\{a} — B\{b}. Extend f by putting
fla) =b.

If we identify the sets A and B in Hall’s theorem, we obtain a result known
as Tutte’s 2-matching theorem. A graph G is said to have a 2-matching if
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its vertex set can be paritioned into parts of size > 2 such that the induced
subgraph on each part has a Hamiltonian cycle (here the graph consisting of
two vertices joined by an edge is considered to have a Hamiltonian cycle).
The following result characterizes graphs that have a 2-matching.

Proposition 2 (Tutte, 1953). A graph G has a 2-matching if and only
if every coclique C' of G satisfies |d(C)| > |C].

Proof. If G has a 2-matching, then to verify the |d(C')| > |C| condition
for G, we need only verify it for the graph G’ consisting of the cycles in the
2-matching. Since these cycles are disjoint, this further reduces to the case
when G’ consists of a single cycle. Now given a coclique C' in G’, each point
x € C is adjacent to two points not in C, while each y € G'\C is adjacent
to at most two points of C, so |d(C)| > |C].

For the converse, consider the bipartite graph on two disjoint copies of
the vertex set of GG, with x in one copy adjacent to y in the other whenever
x and y are adjacent in G. Given any set S of vertices of G, let C' be the set
of points isolated in S. Then d(C') and S\C are disjoint and both contained
in d(9), so

|d(S)] = |d(C)] + [S\C| = |5],

in other words, G’ satisfies the hypothesis of Hall’s theorem. We obtain a
permutation o of the vertices of G such that x is adjacent to o(z) for all z,
and the cycle structure of ¢ yields a 2-matching.

It would be of interest to strengthen the hypothesis of Hall’s theorem in
such a way that o can be taken cyclic, and thus obtain a Hall-type condi-
tion that is sufficient to ensure that a graph has a Hamiltonian cycle. The
following result shows that the most straightforward generalization of Hall’s
condition is not sufficient.

Proposition 3. For every integer r > 0, there exists a graph G onn > r
vertices such that

(i) For any set S of vertices of G, if 1 < |S| < n—r then |d(S)| > r+|5|;

(ii) G is not Hamiltonian.

Proof. We give a general construction of such graphs for » > 2. Of



Figure 1: The construction of GG in the cases r =2 and r = 3

course, this implies the cases r = 0 and r = 1 as well. Let G consist of two
“wheels” W and W’ each composed of a “hub” H, H' and a “rim” R, R'.
The hubs consist of r vertices each, H = {h1,...,h.}, H = {h},... h.}
and they are connected by “axles:” edges (hg,h}), k = 1,...,r. The rims
consist of 72 vertices each, divided into r complete graphs on r vertices each.
We index them R = {ry}, R = {rj;}, i,j = 1,...,7. For any i and any
J1 # jo there are edges (ri;,,74j,) and (rgjl,r;jz). So each R; = {rij}j=1,.r
and R, = {T;j}j:17...7r is a complete graph on r vertices. Finally, we add the
“spokes:” for every i, j and k, there are edges (ri;, hx.) and (r};, hy).

We show first that G is not Hamiltonian. The 27 rim sectors Ry, ..., R.
and R] ... R are connected to each other only via the hubs H and H’. Thus
whenever a path crosses from one sector to another, it must pass through
one of the hubs. Furthermore, if a path crosses between sectors on opposite
wheels, say from R; to R, then it must pass through two hub points, one on
each wheel. In order to visit all 2r sectors, a Hamiltonian cycle would have
to cross between wheels at least twice, and would have to switch sectors at
least 2r times, so it would have to pass through at least 2r + 2 hub points.
This is impossible, because the total number of hub points is only 2r.



It remains to show that G satisfies property (i). Suppose first that S is a
set of vertices in wheel W. If S C H, then S borders all of R as well as |5
elements of H', for a total of

1d(S)| =r* +|S| >7r+]S)|.

If S intersects both R and H, say it contains k vertices in R and [ vertices
of H, then S borders all of W as well as [ elements of H’, which gives

d(S)|=r*+r+1>k+r+l=r+]S]

Finally, suppose S C R. If S intersects the sector R;, then it borders either
all but one vertex of R; (if |[SN R;| = 1) or all of R; (if |[SN R;| > 1). Since
r > 2, this implies that |d(S)NR;| > |SN R;|, and so |d(S)N R| > |S|. Since
S also borders all of H, we get |d(S)| > r +|S].

This establishes (i) in the case when S C W, and, by symmetry, when
S C W’. Suppose now that S is any set of vertices of G, and let T'= SNW,
T'=SnW'.If|dT)Nd(T")| <r, then

|d(S)| = [d(T)] + |d(T")] — [d(T) N d(T")]

>(r+|T)+ (@ +|T)—r=r+]S|

On the other hand, if |d(T)Nd(T")| > r, then |[SN(H UH')| > r, so S inter-
sects both H and H'. Then S borders all of R and R', so |d(S)| > 2r* +r+1.
So there’s no problem unless |S| > 2r* + 1 > r? + 2r + 1, in which case ||
must intersect both R and R, and then d(S) = G. This completes the proof.

At this point, a natural question arises: Does there exist a function f
such that any graph G satisfying
|d(S)] =z min(f(|S]), [V(G)])

for all S C V(G) is Hamiltonian? We show that f(k) = 2k is sufficient. This
follows easily from a well-known result of Dirac.

Proposition 4 (Dirac). If G is a graph on n vertices and every vertex
of G has degree at least n/2. then G has a Hamiltonian cycle.



Figure 2: A non-Hamiltonian graph on 6 vertices satisfying |d(S)| >
min(4/5|/3,6) for all |S|.

Proof. Induct on the number of pairs of non-adjacent vertices of G.
Given non-adjacent vertices x and y in GG, by the inductive hypothesis there

is a Hamiltonian path in G from x to y, call it x = vy, v9...,v, = y. Because
x and y have degree at least n/2, there exists an index ¢ such that y is adjacent
to v; and x is adjacent to v;11. Then x, ve,v3, ...,V Y, Vn_1,Un—2,...,Vit1, T

is a Hamiltonian cycle.

Now suppose G is a graph on n vertices with the property that |d(S)| >
min(2|S|,n) for all sets S of vertices of G. In particular, any [n/2] vertices
border all of G, so every vertex of G can miss at most |n/2] other vertices,
i.e. every vertex has degree at least [n/2], so Dirac’s result applies.

The fact that we used the condition |d(S)| > min(2|S|,n) only for S of
cardinality [n/2] indicates that it may be possible to replace 2 with some
smaller constant. It would be of interest to compute

A = inf{c < 2 : every graph G satisfying |d(S)| > min(c|S|,n)
for all |S| is Hamiltonian}.

The graph in Figure 2 shows that A > 4/3.
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