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Abstract

In previous works, we showed that the internal DLA cluster on Zd with t
particles is almost surely spherical up to a maximal error of O(log t) if d = 2 and
O(
√

log t) if d ≥ 3. This paper addresses “average error”: in a certain sense,
the average deviation of internal DLA from its mean shape is of constant order
when d = 2 and of order r1−d/2 (for a radius r cluster) in general. Appropriately
normalized, the fluctuations (taken over time and space) scale to a variant of
the Gaussian free field.
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1 Introduction

1.1 Overview

We study scaling limits of internal diffusion limited aggregation (“internal DLA”),
a growth model introduced in [MD86, DF91]. In internal DLA, one inductively
constructs an occupied set At ⊂ Zd for each time t ≥ 0 as follows: begin with
A0 = ∅ and A1 = {0}, and let At+1 be the union of At and the first place a random
walk from the origin hits Zd \ At. A continuum analogue of internal DLA is the
famous Hele-Shaw model for fluid insertion.1

The purpose of this paper is to study the growing family of sets At. Following
the pioneering work of [LBG92], it is by now well known that, for large t, the
set At approximates an origin-centered Euclidean lattice ball Br := Br(0) ∩ Zd
(where r = r(t) is such that Br(0) has volume t). The authors recently showed
that this is true in a fairly strong sense [JLS09, JLS12a, JLS12b]: the maximal
distance from a point where 1At − 1Br is non-zero to ∂Br(0) is a.s. O(log t) if d = 2
and O(

√
log t) if d ≥ 3. In fact, if C is large enough, the probability that this

maximal distance exceeds C log t (or C
√

log t when d ≥ 3) decays faster than any

1It follows from [LP10] that the internal DLA cluster formed from a finite set of point sources
in Zd has a scaling limit which solves an obstacle problem in Rd. Hele-Shaw flow solves the
same obstacle problem [GV06]. In contrast, the Witten-Sander model of external DLA [WS81], in
which random walkers start “at infinity” and stop when reaching a site neighboring the cluster, is
analogous to the (ill-posed) reverse time direction of Hele-Shaw flow.
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fixed (negative) power of t. Some of these results are obtained by different methods
in [AG12a, AG12b].

This paper will ask what happens if, instead of considering the maximal distance
from ∂Br(0) at time t, we consider the “average error” at time t (allowing inner and
outer errors to cancel each other out). It turns out that in a distributional “average
fluctuation” sense, the set At deviates from Br(0) by only a constant number of
lattice spaces when d = 2 and by an even smaller amount when d ≥ 3. Appropriately
normalized, the fluctuations of At, taken over time and space, define a distribution
on Rd that converges in law to a variant of the Gaussian free field (GFF): a random
distribution on Rd that we will call the augmented Gaussian free field. (It can
be constructed by defining the GFF in spherical coordinates and replacing variances
associated to spherical harmonics of degree k by variances associated to spherical
harmonics of degree k+1; see §1.5.) The “augmentation” appears to be related to a
damping effect produced by the mean curvature of the sphere (as discussed below).2

To our knowledge, no central limit theorem of this kind has been previously
conjectured in either the physics or the mathematics literature. The appearance
of the GFF and its “augmented” variants is a particular surprise. (It implies that
internal DLA fluctuations — although very small — have long-range correlations
and that, up to the curvature-related augmentation, the fluctuations in the direction
transverse to the boundary of the cluster are of a similar nature to those in the
tangential directions.) Nonetheless, the heuristic idea is easy to explain. Before we
state the central limit theorems precisely (§1.3 and §1.4), let us explain the intuition
behind them.

Write a point x ∈ Rd in polar coordinates as ru for r ≥ 0 and u ∈ Rd on the unit
sphere (|u| = 1). Suppose that at each time t the boundary of At is approximately
parameterized by rt(u)u for a function rt defined on the unit sphere. Write

rt(u) = (t/ωd)
1/d + ρt(u)

where ωd is the volume of the unit ball in Rd. The ρt(u) term measures the deviation
from circularity of the cluster At in the direction u. How do we expect ρt to evolve
in time? To a first approximation, the angle at which a random walk exits At is a
uniform point on the unit sphere. If we run many such random walks, we obtain a
sort of Poisson point process on the sphere, which has a scaling limit given by space-
time white noise on the sphere. However there is a smoothing effect coming from the
fact that places where ρt is negative are more likely to be hit by the random walks
than places where ρt is positive, and hence |ρt| is more likely to shrink in time. There
is also secondary damping effect coming from the mean curvature of the sphere: As
t increases, even if the existing fluctuations do not decrease in absolute size, they
make up a smaller proportion of the boundary as the cluster grows.

2Consider continuous time internal DLA on the half cylinder (Z/mZ)d−1 × Z+, with particles
started uniformly on (Z/mZ)d−1 × {0}. Though we do not prove this here, we expect the cluster
boundaries to be approximately flat cross-sections of the cylinder, and we expect the fluctuations
to scale to the ordinary GFF on the half cylinder as m→∞.
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The white noise should correspond to adding independent Brownian noise terms
to the spherical Fourier modes of ρt. The rate of smoothing/damping in time should
be approximately given by Λρt for some linear operator Λ mapping the space of func-
tions on the unit sphere to itself. Since the random walks approximate Brownian
motion (which is rotationally invariant), we would expect Λ to commute with or-
thogonal rotations, and hence have spherical harmonics as eigenfunctions. With
the right normalization and parameterization, it is therefore natural to expect the
spherical Fourier modes of ρt to evolve as independent Brownian motions subject
to linear “restoration forces” (a.k.a. Ornstein-Uhlenbeck processes) where the mag-
nitude of the restoration force depends on the degree of the corresponding spherical
harmonic. It turns out that the restriction of the (ordinary or augmented) GFF on
Rd to a centered volume t sphere evolves in time t in a similar way.

Of course, as stated above, the “spherical Fourier modes of ρt” have not really
been defined (since the boundary of At is complicated and generally cannot be
parameterized by rt(u)u). In the coming sections, we will define related quantities
that (in some sense) encode these spherical Fourier modes and are easy to work
with. These quantities are the martingales obtained by summing discrete harmonic
polynomials over the cluster At.

The heuristic just described provides intuitive interpretations of the results given
below. Theorem 1.3, for instance, identifies the weak limit as t→∞ of the internal
DLA fluctuations from circularity at a fixed time t: the limit is the two-dimensional
augmented Gaussian free field restricted to the unit circle ∂B1(0), which can be
interpreted in a distributional sense as the random Fourier series

1√
2π

[
α0/
√

2 +

∞∑
k=1

αk
cos kθ√
k + 1

+ βk
sin kθ√
k + 1

]
(1)

where αk for k ≥ 0 and βk for k ≥ 1 are independent standard Gaussians. The
ordinary two-dimensional GFF restricted to the unit circle is similar, except that√
k + 1 is replaced by

√
k.

The series (1) — unlike its counterpart for the one-dimensional Gaussian free
field, which is a variant of Brownian bridge — is a.s. divergent, which is why we use
the dual formulation explained in §1.4. The dual formulation of (1) amounts to a
central limit theorem, saying that for each k ≥ 1 the real and imaginary parts of

Mk =
1

r

∑
z∈Aπr2

(z
r

)k
converge in law as r → ∞ to normal random variables with variance π

2(k+1) (and

that Mj and Mk are asymptotically uncorrelated for j 6= k). See [FL12, §6.2] for
numerical data on the moments Mk in large simulations.
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1.2 FKG inequality statement and continuous time

Before we set about formulating our central limit theorems precisely, we mention a
previously overlooked fact. Suppose that we run internal DLA in continuous time
by adding particles at Poisson random times instead of at integer times: this process
we will denote by AT (t) (or often just AT ) where T (t) is the counting function for
a Poisson point process in the interval [0, t] (so T (t) is Poisson distributed with
mean t). We then view the entire history of the IDLA growth process as a (random)
function on [0,∞)×Zd, which takes the value 1 or 0 on the pair (t, x) accordingly as
x ∈ AT (t) or x /∈ AT (t). Write Ω for the set of functions f : [0,∞)×Zd → {0, 1} such
that f(t, x) ≤ f(t′, x) whenever t ≤ t′, endowed with the coordinate-wise partial
ordering. Let P be the distribution of {AT (t)}t≥0, viewed as a probability measure
on Ω.

Theorem 1.1. (FKG inequality) For any two increasing functions F,G ∈ L2(Ω,P),
the random variables F ({AT (t)}t≥0) and G({AT (t)}t≥0) are nonnegatively correlated.

One example of an increasing function is the total number #AT (t)∩X of occupied

sites in a fixed subset X ⊂ Zd at a fixed time t. One example of a decreasing
function is the smallest t for which all of the points in X are occupied. Intuitively,
Theorem 1.1 means that on the event that one point is absorbed at a late time,
it is conditionally more likely for all other points to be absorbed late. The FKG
inequality is an important feature of the discrete and continuous Gaussian free fields
[She07], so it is interesting (and reassuring) that it appears in internal DLA at the
discrete level. We have included it here because we believe it to be of independent
interest, but the proofs of our main results will not use the FKG inequality.

Sampling a continuous time internal DLA cluster at time t is equivalent to first
sampling a Poisson random variable T with expectation t and then sampling an
ordinary internal DLA cluster of size T . (By the central limit theorem, |t − T |
has order

√
t with high probability.) Although using continuous time amounts to

only a modest time reparameterization (chosen independently of everything else) it
is aesthetically natural. Our use of “white noise” in the heuristic of the previous
section implicitly assumed continuous time. (Otherwise the total integral of ρt would
be deterministic, so the noise would have to be conditioned to have mean zero at
each time.)

1.3 Main results in dimension two

For x ∈ Z2 write
F (x) := inf{t : x ∈ AT (t)}

and
L(x) :=

√
F (x)/π − |x|

where |x| = (x2
1 + x2

2)1/2 is the Euclidean norm. In words, L(x) is the difference
between the radius of the area t disk — at the time t that x was absorbed into AT
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(a) (b)

Figure 1: (a) Continuous-time IDLA cluster AT (t) for t = 105. Early points (where
L is negative) are colored red, and late points (where L is positive) are colored blue.
(b) The same cluster, with the function L(x) represented by red-blue shading.

— and |x|. It is a measure of how much later or earlier x was absorbed into AT
than it would have been if the sets AT (t) were exactly centered discs of area t. By
the main result of [JLS12a], almost surely

lim sup
x∈Z2

L(x)

log |x|
<∞.

The coloring in Figure 1(a) indicates the sign of the function L(x), while Fig-
ure 1(b) illustrates the magnitude of L(x) by shading. Note that the use of contin-
uous time means that the average of L(x) over x may differ substantially from 0.
Indeed we see that — in contrast with the corresponding discrete-time figure of
[JLS12a] — there are noticeably fewer early points than late points in Figure 1(a),
which corresponds to the fact that in this particular simulation T (t) was smaller
than t for most values of t. Since for each fixed x ∈ Z2 the quantity L(x) is a
decreasing function of At(x), the FKG inequality holds for L as well. The positive
correlation between values of L at nearby points is readily apparent from the figure.

To state a limit theorem for the lateness function, consider its rescaling for R > 0

GR((x1, x2)) := L((bRx1c, bRx2c)).

Identify R2 with C and let H0 be the linear span of the set of functions on C of the
form Re(azk)f(|z|) for a ∈ C, k ∈ Z≥0, and f smooth and compactly supported on
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R>0. The space H0 is obviously dense in L2(C), and it turns out to be a convenient
space of test functions. The augmented GFF (and its restriction to ∂B1(0)) will be
defined precisely in §1.4 and §1.5.

Theorem 1.2. (Weak convergence of the lateness function) As R→∞, the function
GR converges to the augmented Gaussian free field h in the following sense: for each
set of test functions φ1, . . . , φk in H0, the joint law of the inner products (φj , GR)
converges to the joint law of (φj , h).

Figure 2: Top: Symmetric difference between IDLA cluster AT (t) at continuous

time t = 105 and the disk of radius
√
t/π. Bottom: closeup of a portion of the

boundary. Sites outside the disk are colored red if they belong to AT (t); sites inside
the disk are colored blue if they do not belong to AT (t).

Our next result addresses the fluctuations from circularity at a fixed time, as
illustrated in Figure 2.

Theorem 1.3. (Fluctuations from circularity) Consider the distribution with point
masses on R2 given by

Et := r−1
∑
x∈Z2

(
1x∈AT (t)

− 1x∈Br
)
δx/r, (2)

where r =
√
t/π. As t → ∞, the Et converge to the restriction of the augmented

GFF to ∂B1(0), in the sense that for each set of test functions φ1, . . . , φk in H0,
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the joint law of (φj , Et) converges to the joint law of Φh(φj , π) (a Gaussian process
defined in §1.4).

As observed numerically in [MD86] and now partly proved in [AG11], the de-
viation of At from circularity in a fixed direction is believed to be of order

√
log r

(as opposed to the maximal deviation among all directions, believed to be of or-
der log r). Note, however that no scaling factor of

√
log r appears in Theorems 1.2

and 1.3. Indeed, to obtain convergence to Gaussian free field, one must scale the
quantity of interest so that it just barely diverges, in order to obtain a limit that
(like the Gaussian free field) is not defined at points. Instead of a random function,
the limit is a random distribution: the Fourier series (1) diverges almost surely, but
its integral against a test function such as cos kθ is a well-defined Gaussian random
variable.

1.4 Main results in general dimensions

In this section, we will extend Theorem 1.3 to general dimensions d ≥ 2 and to a
range of times (instead of a single time). That is, we will try to understand scaling
limits of the discrepancies of the sort depicted in Figure 2 (interpreted in some sense
as random distributions) in general dimensions and taken over a range of times. We
will see that the kinds of fluctuations that emerge from internal DLA randomness
are of the order that one would obtain by spreading an extra rd/2 ∼

√
t particles

over a constant fraction of the spherical boundary.
However, a count of the number of lattice points in a ball shows that some

caution is in order. By classical results in number theory (see the survey [IKKN04]
for their history), the difference between the size of Br = Br(0) ∩ Zd and ωdr

d is
of order rd−2 in all dimensions d ≥ 5. Because d − 2 > d/2, a naive generalization
of Theorem 1.3 to higher dimensions will fail. Indeed, suppose that we define Et
analogously to (2) as

Et = r−d/2
∑
x∈Zd

(
1x∈AT (t)

− 1x∈Br
)
δx/r

where r = (t/ωd)
1/d. If φ is a test function that is equal to 1 in a neighborhood of

∂B1(0), then for large t,

(Et, φ) = r−d/2
(
T (t)−#Br

)
.

This quantity does not converge in law to a finite random variable as t → ∞:
The random fluctuations of T (t) (which has the Poisson distribution of mean t and
therefore standard deviation

√
t ∼ rd/2) are swamped by the order rd−2 deterministic

fluctuations of #Br.
Because the fluctuations of internal DLA are so small, it is a challenge to for-

mulate a central limit theorem that is not swamped by the larger number theoretic
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irregularities of #Br. We will see below that this can be achieved by replacing Br

with different ball approximations (the so-called “divisible sandpiles”) that are in
some sense even “rounder” than the lattice balls themselves. We will also have to
define and interpret the (augmented) GFF in a particular way.

Given smooth real-valued functions f1 and f2 on Rd, write

(f1, f2)∇ =

∫
Rd
∇f1(x) · ∇f2(x)dx.

Here and below dx denotes Lebesgue measure on Rd. Given a bounded domain
D ⊂ Rd, let H(D) be the Hilbert space closure in (·, ·)∇ of the set of smooth
compactly supported functions on D. We define H = H(Rd) analogously except
that the functions are taken modulo additive constants. The Gaussian free field
(GFF) is defined formally by

g :=

∞∑
i=1

αifi, (3)

where the fi are any fixed (·, ·)∇ orthonormal basis for H and the αi are i.i.d. mean
zero, unit variance normal random variables. (One also defines the GFF on D
similarly, using H(D) in place of H.) The augmented GFF will be defined similarly
below, but with a slightly different inner product.

Since the sum (3) a.s. does not converge within H, one has to think a bit about
how g is defined. Note that for any fixed f =

∑
βifi ∈ H, the quantity (g, f)∇ :=∑

(αifi, f)∇ =
∑
αiβi is almost surely finite and has the law of a centered Gaussian

with variance ‖f‖∇ =
∑
|βi|2. However, there a.s. exist some functions f ∈ H for

which the sum does not converge, and (g, ·)∇ cannot be considered as a continuous
functional on all of H. Rather than try to define (g, f)∇ for all f ∈ H, it is often
more convenient and natural to focus on some subset of f values (with dense span)
on which f 7→ (g, f)∇ is a.s. a continuous function (in some topology). Here are
some sample approaches to defining a GFF on D:

1. g as a random distribution: For each smooth, compactly supported φ,
write (g, φ) := (g,−∆−1φ)∇, which (by integration by parts) is formally the
same as

∫
g(x)φ(x)dx. This is almost surely well defined for all such φ and

makes g a random distribution [She07]. (If D = Rd and d = 2, one requires∫
φ(x)dx = 0, so that (g, φ) is defined independently of the additive constant.

When d > 2 one may fix the additive constant by requiring that the mean of
g on Br(0) tends to zero as r →∞ [She07].)

2. g as a random continuous (d + 1)-real-parameter function: For each
ε > 0 and x ∈ Rd, let gε(x) denote the mean value of g on ∂Bε(x). For each
fixed x, this gε(x) is a Brownian motion in time parameterized by − log ε in
dimension 2, or −ε2−d in higher dimensions [She07]. For each fixed ε, the
function gε can be thought of as a regularization of g (a point of view used
extensively in [DS10]).
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3. g as a family of “distributions” on origin-centered spheres: For each
polynomial function φ on Rd and each t > 0, define Φg(φ, t) to be the integral
of gφ over ∂Br(0) where Br(0) is the origin-centered ball of volume t.

The difference between these three approaches boils down to what test functions
or measures we want to be able to integrate g against. In the first case we consider
smooth test functions, in the second uniform measures on spheres, and in the third
uniform measures on origin-centered spheres weighted by polynomials.

The last approach is the least intuitive, but it turns out to be particularly nat-
ural for our purposes. We define the augmented GFF h (reserving the letter g for
the ordinary GFF) by defining the random variables Φh(φ, t) for all t > 0 and poly-
nomials φ, as follows. Let r be the radius such that the volume of Br(0) is t, and let
ψt be the harmonic function in Br(0) equal to φ on ∂Br(0). Because polynomials
on the sphere are linear combinations of spherical harmonics, ψt is a polynomial.
We define Φh as the centered Gaussian function for which

Cov
(
Φh(φ1, t1),Φh(φ2, t2)

)
=

∫
Br(0)

ψt11 (x)ψt22 (x)dx, (4)

where Br(0) is the origin-centered ball of volume min{t1, t2}. In particular, if ψ is
a harmonic polynomial, then

Var
(
Φh(ψ, t)

)
=

∫
Br(0)

ψ(x)2dx. (5)

We write formula (5) more explicitly in two dimensions as follows. (This same
calculation is carried out in all dimensions in Lemma 1.5.) Fix r and suppose that
t = πr2,

φ(reiθ) =
∑
|k|≤N

ake
ikθ.

The harmonic extension of φ in Br(0) is

ψ(z) = a0 +
N∑
k=1

(ak(z/r)
k + a−k(z̄/r)

k), z ∈ C, |z| ≤ r,

and

Var
(
Φh(φ, t)

)
= Var

(
Φh(ψ, t)

)
=
∑
|k|≤N

aka−k
πr2

|k|+ 1
. (6)

We can now return to the statement of Theorem 1.2 in two dimensions and explain
what the inner product (φ, h) means when φ ∈ H0. Identifying R2 with C and
writing z = reiθ, such a test function φ has the form

φ(z) =
∑
|k|≤N

ak(r)e
ikθ
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where the ak are smooth functions supported in an interval 0 < r0 ≤ r ≤ r1 < ∞.
We define (φ, h) by the stochastic integral

(φ, h) :=

∫ r1

r0

[
N∑
k=0

ak(r)Φh

((z
r

)k
, πr2

)
+

−1∑
k=−N

ak(r)Φh

(( z̄
r

)k
, πr2

)]
dr

Though not immediately obvious from the above, we will see in §1.5 that this defi-
nition is very close to that of the ordinary GFF.

Returning to the case of general dimension, for each integer m and harmonic
polynomial ψ, there is a discrete harmonic polynomial ψ(m) on 1

mZd (defined pre-
cisely in §2.2) that approximates ψ in the sense that ψ − ψ(m) is a polynomial of
degree at most k−2, where k is the degree of ψ. In §2.2 we show that for a fixed ho-
mogeneous harmonic polynomial ψ, if we limit our attention to x in a fixed bounded
subset of Rd, then we have |ψ(m)(x)− ψ(x)| = O(1/m2).

Discrete harmonic functions obey a mean value property: for each r > 0 there is
a function w supported on the discrete ball B = Br(0) ∩ 1

mZd, such that w closely
approximates the indicator function 1B, and

∑
x∈B w(x)(f(x) − f(0)) = 0 for all

functions f that are discrete harmonic on B; see the remark following Theorem 1.4.
To measure the deviation of the IDLA cluster from circularity (more precisely, its
deviation from w) we define

Φm
A (ψ, t) := m−d/2

 ∑
x∈A

T (mdt)

ψ(m)(x/m)

−mdtψ(m)(0)

 . (7)

When ψ(m)(0) = 0, this random variable measures to what extent the mean value
property for the discrete harmonic polynomial ψ(m) fails for the set AT (mdt). When
ψ(m) is a constant function, it measures fluctuations in the size of the cluster.

Theorem 1.4. Fix d ≥ 2, let h be the augmented GFF in Rd, and Φh as discussed
above. Then as m→∞, the random functions Φm

A converge in law to Φh (w.r.t. the
smallest topology that makes Φ 7→ Φ(ψ, t) continuous for each ψ and t). In other
words, for any harmonic polynomials ψ1, . . . , ψk and any t1, . . . , tk > 0, the joint
law of the Φm

A (ψi, ti) converges to the joint law of the Φh(ψi, ti).

Remark. The reason for the variance formula (5) in the definition of augmented
GFF boils down to a very simple calculation: Supposing ψ(0) = 0, consider the
discrete time process

M(n) =
∑
x∈An

ψ(1)(x).

Since ψ(1) is discrete harmonic, M is a martingale, and

EM(n)2 = E
n∑
j=1

((M(j)−M(j − 1))2 = E
n∑
j=1

ψ(1)(Xj)
2
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where {Xj} = Aj \ Aj−1. Because An is close to the origin-centered ball Br(n) of
volume n, the right side divided by

∫
Br(n)

ψ(x)2dx tends to 1 as n → ∞. Except

for minor complications about continuous time, the proof in Section 2.3 proceeds
exactly on these lines.

Note that the scaling factor of m−d/2 in (7) makes Φm
A sensitive to small changes

in the cluster AT (mdt): increasing the radius of the cluster by only m1−d/2 along a

constant fraction of the boundary would result in adding order m1−d/2md−1 = md/2

additional points to the cluster, producing an order 1 change in Φm
A . The fact that

Φm
A (ψ, t) converges in law to a Gaussian random variable with finite variance makes

precise the claim in the abstract that the averaged fluctuations of internal DLA are
of order the radius of the cluster raised to the power 1− d/2.

Theorem 1.4 does not really address the discrepancies between AT and Br

(which, as we noted earlier, can be very large, in particular in the case that ψ is a
constant function). Rather, it can be interpreted as a measure of the discrepancy
between AT and the so-called divisible sandpile, which is a function wt : Zd → [0, 1]
defined for all t ≥ 0. The quantity wt(x) represents the amount of mass that ends
up at x if one begins with t units of mass at the origin and then “spreads” the
mass around according to certain rules that ensure that the final amount of mass
at each site is at most one. We will not give the construction here, but just list
the properties of wt that are important to us. For proofs of these properties, see
[JLS12b, Lemma 6], which in turn is a restatement of [LP09, Theorem 1.3].

Denote by ωd the volume of the unit ball in Rd, and by r(t) = (t/ωd)
1/d the radius

of the ball of volume t. For fixed x, the quantity wt(x) is a continuously increasing
function of t, and

∑
x∈Zd wt(x) = t. Moreover there exists a constant c depending

only on the dimension d, such that wt(x) = 1 if |x| < r(t) − c and wt(x) = 0
if |x| > r(t) + c. An important property of wt is that for any function f on Zd
that is discrete harmonic on Br(t)+c we have

∑
x∈Zd wt(x)(f(x)− f(0)) = 0. Taking

f(x) = ψ(m)(x/m), which is a discrete harmonic function on Zd, this property allows
us to express the random variable (7) in terms of the discrepancy between AT and
wt, namely

Φm
A (ψ, t) = m−d/2

∑
x∈Zd

ψ(m)(x/m)
(

1x∈A
T (mdt)

− wmdt(x)
)
.

To make the connection with Theorem 1.3, suppose we replace (2) with the random
variable

Ẽt := m−d/2
∑
x∈Zd

(
1x∈AT (t)

− wt(x)
)
δx/m (8)

where m = r(t). Then Φm
A (ψ, t) = (ψ(m), Ẽmdt). In this sense Theorem 1.4 is a

statement about the distributional limit of Ẽt: it says that

(ψ(m), Ẽmdt)→ Φh(ψ, t) (9)

12



in law as m → ∞ (and more generally, for any ψ1, . . . , ψk and t1, . . . , tk the joint
law of the ((ψi)(m), Ẽtimd) converges to the joint law of the Φh(ψi, ti)).

Beyond the obvious difference of replacing the indicator of the ball with wt, the
convergence in (9) differs from Theorem 1.3 in two other respects: it addresses only
harmonic polynomial test functions ψ, and it also requires that we replace them
with approximations ψ(m) on the discrete level. It is natural to ask, in general
dimensions, what happens when we try to modify the statement of (9) to make it
read like the distributional convergence statement of Theorem 1.3. We will discuss
this in more detail in §3.4, but we can summarize the situation roughly as follows:

Modification When it matters

Replacing wt in (8) with 1Br No effect when d = 2.
Invalidates result when d > 3.

Keeping wt in (8) but
Replacing ψ(m) in (9) with ψ

No effect if d ∈ {2, 3, 4, 5}.
Unclear if d > 5.

Keeping wt in (8) but
Replacing ψ(m) in (9) with a

general smooth test function φ.

No effect if d ∈ {2, 3}.
Probably invalidates result if d > 3.

The restriction to harmonic ψ (as opposed to a more general test function φ)
seems to be necessary in large dimensions because otherwise the derivative of the
test function along ∂B1(0) appears to have a non-trivial effect on (8) (see §3.4).
This is because (8) has a lot of positive mass just outside of the unit sphere and a
lot of negative mass just inside the unit sphere. It may be possible to formulate a
version of Theorem 1.4 (involving some modification of the “mean shape” described
by wt) that uses test functions that are constant in the radial direction in a neigh-
borhood of the ∂B1(0) (instead of using only harmonic test functions), but we will
not address this point here. Deciding whether Theorem 1.2 as stated extends to
higher dimensions requires some number theoretic understanding of the extent to
which the discrepancies between wt and 1Br (as well as the errors that come from
replacing a ψ(m) with a smooth test function φ) average out when one integrates
over a range of times. We will not address these points here either.

1.5 Comparing the GFF and the augmented GFF

Using the last of the three approaches to GFF discussed in Section 1.4, we will
compare the functionals Φg(ψ, t) and Φh(ψ, t), where g is the ordinary GFF and h
is the augmented GFF.

We may write a general vector in Rd as ru where r ∈ [0,∞) and u ∈ Sd−1 :=
∂B1(0). We write the Laplacian in spherical coordinates as

∆ = r1−d ∂

∂r
rd−1 ∂

∂r
+ r−2∆Sd−1 . (10)

13



A polynomial ψ ∈ R[x1, . . . , xd] is called harmonic if ∆ψ is the zero polynomial.
Suppose that ψ is harmonic and homogeneous of degree k. Letting f = ψ|Sd−1 , we
have ψ(ru) = f(u)rk for all u ∈ Sd−1 and r ≥ 0. Setting (10) to zero at r = 1 yields

∆Sd−1f = −k(k + d− 2)f,

i.e., f is an eigenfunction of ∆Sd−1 with eigenvalue −k(k + d − 2). Note that the
expression −k(k + d − 2) is unchanged when the nonnegative integer k is replaced
with the negative integer k′ := −(d − 2) − k. Thus f(u)rk

′
is also harmonic on

Rd \ {0}.

Lemma 1.5. Let ψ ∈ R[x1, . . . , xd] be a homogeneous harmonic polynomial of de-
gree k ≥ 0, normalized so that ∫

Sd−1

ψ(u)2du = 1. (11)

Let R be such that the ball BR(0) in Rd has volume t. Then

Var Φg(ψ, t) =
R2k+d

2k + d− 2
(12)

and

Var Φh(ψ, t) =
R2k+d

2k + d
. (13)

Proof. By scaling, the integral of ψ2 over ∂Br(0) is given by rd−1r2k. By the defi-
nition (5) of the augmented GFF, the variance of Φh(ψ, t) equals the L2 norm of ψ
on BR(0):

Var Φh(ψ, t) =

∫
BR(0)

ψ(z)2dz =

∫ R

0
rd−1r2kdr =

Rd+2k

d+ 2k
.

Next we compute the variance of Φg(ψ, t). Consider the function ψR that equals
ψ on the ball BR(0) and is extended harmonically outside BR(0) by the formula

ψR(ru) = Rk−k
′
f(u)rk

′

for r > R. Then −∆ψR = cψσR for a constant c = k−k′
R , where σR is the surface

measure on the sphere ∂BR(0). Hence

Φg(ψ, t) := (g, ψσR) = (g,−1

c
∆ψR) =

1

c
(g, ψR)∇

so that

Var Φg(ψ, t) =
1

c2
(ψR, ψR)∇. (14)
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The calculation that remains is to find the Dirichlet energy (ψR, ψR)∇. We in-
tegrate in spherical shells. Write ∇Sd−1f for the gradient of f (a vector field on the
sphere Sd−1). A standard identity states that the Dirichlet energy

∫
Sd−1 ‖∇Sd−1f‖2du

is given by the L2 inner product (−∆Sd−1f, f) = k(k+ d− 2). The square of ‖∇ψ‖
is given by the square of its component along Sd−1 plus the square of its radial
component. We thus find that the Dirichlet energy of ψ on BR(0) is given by∫

BR(0)
‖∇ψ(z)‖2dz = k(k + d− 2)

∫ R

0
rd−1r2(k−1)dr +

∫ R

0
rd−1r2(k−1)k2dr

=
k(k + d− 2)

2k + d− 2
R2k+d−2 +

k2

2k + d− 2
R2k+d−2

= kR2k+d−2.

Likewise, the Dirichlet energy of ψR outside of BR(0) can be computed as

R2(k−k′)k(k + d− 2)

∫ ∞
R

rd−1r2(k′−1)dr +R2(k−k′)
∫ ∞
R

rd−1r2(k′−1)(k′)2dr,

which (recalling k′ = −(d− 2)− k) simplifies to

−k
2 + k(d− 2) + (k′)2

2k′ + (d− 2)
R2k+d−2 = (k + d− 2)R2k+d−2.

Combining the inside and outside contributions, we obtain (ψR, ψR)∇ = (2k + d −
2)R2k+d−2. Recalling that c = k−k′

R = 2k+d−2
R , the result now follows from (14).

In some ways, the augmented GFF is very similar to the ordinary GFF: when
we restrict attention to an origin-centered annulus, it is possible to construct inde-
pendent Gaussian random distributions h1, h2, and h3 such that h1 has the law of
a constant multiple of the GFF, h1 + h2 has the law of the augmented GFF, and
h1 + h2 + h3 has the law of the ordinary GFF.

Next we show that in dimension 2, GFF and augmented GFF restricted to the
unit circle are mutually absolutely continuous. In light of Theorem 1.3, it follows
that (up to absolute continuity) the scaling limit of fixed-time At fluctuations can
be described by the GFF itself.

Recall that if µ and ν are probability measures with Radon-Nikodym derivative
dν
dµ = f , then their relative entropy is defined by

H(ν|µ) =

∫
f log f dµ =

∫
log f dν.

If ν is not absolutely continuous with respect to µ, then H(ν|µ) is defined to be ∞.
Relative entropy is additive with respect to infinite products:

H

∏
n≥1

νn

∣∣∣∣∣∣
∏
n≥1

µn

 =
∑
n≥1

H(νn|µn).
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Proposition 1.6. When d = 2, the law ν of the restriction of the GFF to the unit
circle (modulo additive constant) is absolutely continuous w.r.t. the law µ of the
restriction of the augmented GFF restricted to the unit circle.

Proof. Let H(S1) be the Hilbert space closure with respect to the Dirichlet inner
product of the set of smooth functions f on the unit circle S1 such that

∫
S1 f(θ) dθ =

0. Write ĝ, ĥ respectively for the 2-dimensional GFF g and augmented GFF h taken
modulo additive constant and restricted to S1 = ∂B1(0). The random distributions
ĝ and ĥ are defined on test functions in H(S1). In particular, if ψ ∈ R[x1, x2] is
a harmonic polynomial and ψ̂ is its restriction to S1, then (ĝ, ψ̂) = Φg(ψ, π) and

(ĥ, ψ̂) = Φh(ψ, π).
An orthonormal basis for H(S1) is {ck, sk}k≥1 where ck(θ) = 1√

π
cos kθ and

sk(θ) = 1√
π

sin kθ. So ĝ and ĥ are determined by the centered Gaussians

αk = (ĝ, ck), βk = (ĝ, sk)

α′k = (ĥ, ck), β′k = (ĥ, sk)

for k ≥ 1. Now since ck and sk are each the restriction of a harmonic polynomial to
S1 (namely, the real and imaginary parts of 1√

π
(x1 + ix2)k) we can use Lemma 1.5

with R = 1 to find their variances:

Varαk = Varβk =
1

2k
, Varα′k = Varβ′k =

1

2k + 2
.

Both collections {αk, βk}k≥1 and {α′k, β′k}k≥1 are independent (in the case of the
augmented GFF this can be seen from (6)).

The relative entropy of a centered Gaussian of density e−x
2/2 with respect to a

centered Gaussian of density σ−1e−x
2/(2σ2) is given by

F (σ) =

∫
e−x

2/2
(
(σ−2 − 1)x2/2 + log σ

)
dx = (σ−2 − 1)/2 + log σ.

Note that F ′(σ) = −σ−3 + σ−1, and in particular F ′(1) = 0. Thus the relative
entropy of a centered Gaussian of variance 1 with respect to a centered Gaussian
of variance 1 + a is O(a2). This implies that the relative entropies H(αk|α′k) and
H(α′k|αk) are O(k−2). Since relative entropy is additive for independent random
variables, we conclude that

H(µ|ν) = 2
∑
k≥1

H(α′k|αk) <∞.

which implies that µ is absolutely continuous with respect to ν. Likewise H(ν|µ) <
∞, which implies that ν is absolutely continuous with respect to µ.
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2 General dimension

2.1 FKG inequality: Proof of Theorem 1.1

We recall that increasing functions of a Poisson point process are non-negatively
correlated [GK97]. (This is easily derived from the more well known statement
[FKG71] that increasing functions of independent Bernoulli random variables are
non-negatively correlated.) Let µ be the simple random walk probability measure
on the space Ω′ of walks W beginning at the origin. Then the randomness for
internal DLA is given by a rate-one Poisson point process on µ × ν where ν is
Lebesgue measure on [0,∞). A realization of this process is a random collection of
points in Ω′ × [0,∞). It is easy to see (for example, using the abelian property of
internal DLA discovered by Diaconis and Fulton [DF91]) that adding an additional
point (w, s) increases the value of AT (t) for all times t. The AT (t) are hence increasing
functions of the Poisson point process, and are non-negatively correlated. Since F
and G are increasing functions of the AT (t), they are also increasing functions of the
point process — and are thus non-negatively correlated.

2.2 Discrete harmonic polynomials

Let ψ(x1, . . . , xd) be a polynomial that is harmonic on Rd, that is

d∑
i=1

∂2ψ

∂x2
i

= 0.

Let m ≥ 1. In this section we give a recipe for constructing a polynomial ψ(m) that

is discrete harmonic on the lattice 1
mZd and such that ψ(m) − ψ has degree at most

k − 2, where k is the degree of ψ.
We begin by constructing ψ(1). The requirement of discrete harmonicity is that

d∑
i=1

D2
i ψ(1) = 0

where
D2
i ψ(1) = ψ(1)(x+ ei)− 2ψ(1)(x) + ψ(1)(x− ei)

is the symmetric second difference in direction ei. The construction described below
is nearly the same as the one given by Lovász in [Lov04], except that we have tweaked
it in order to obtain a smaller error term: if ψ has degree k, then ψ−ψ(1) has degree
at most k − 2 instead of k − 1. Discrete harmonic polynomials have been studied
classically, primarily in two variables: see for example Duffin [Duf56], who gives a
construction based on discrete contour integration.

Consider the linear map

Ξ : R[x1, . . . , xd]→ R[x1, . . . , xd]
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defined on monomials by

Ξ(xk11 · · ·x
kd
d ) = Pk1(x1) · · ·Pkd(xd)

where Pk is the one-variable polynomial defined by

Pk(y) =

(k−1)/2∏
j=−(k−1)/2

(y + j).

Note that for k even, this product runs over the k half-integers

−k − 1

2
,−k − 3

2
, . . . ,

k − 1

2
.

Lemma 2.1. If ψ ∈ R[x1, . . . , xd] is a polynomial of degree k that is harmonic on
Rd, then the polynomial ψ(1) = Ξ(ψ) is discrete harmonic on Zd, and ψ − ψ(1) is a
polynomial of degree at most k − 2.

Proof. An easy calculation shows that

D2Pk = k(k − 1)Pk−2

from which we see that

D2
i Ξ[ψ] = Ξ[

∂2

∂x2
i

ψ].

If ψ is harmonic, then the right side vanishes when summed over i = 1, . . . , d, which
shows that Ξ[ψ] is discrete harmonic.

Note that Pk(y) is even for k even and odd for k odd. In particular, Pk(y)− yk
has degree at most k− 2, which implies that ψ−ψ(1) has degree at most k− 2.

We say that a function f is discrete harmonic on the lattice 1
mZd if the function

g(x) = f(x/m) is discrete harmonic on Zd. Having constructed an approximation
ψ(1) = Ξ(ψ) that is discrete harmonic on Zd, let us now construct an approximation

ψ(m) that is discrete harmonic on 1
mZd. Write ψ =

∑k
j=0 ψj where ψj is the graded

homogenous part of ψ of degree j. Let

ψ(m)(x) :=
k∑
j=0

Ξ(ψj)(mx)

mj
−

k∑
j=2

Ξ(ψj)(0)

mj
. (15)

Lemma 2.2. If ψ ∈ R[x1, . . . , xd] is a polynomial of degree k that is harmonic on
Rd, then ψ(m) is discrete harmonic on 1

mZd. Moreover, ψ(0) = ψ(m)(0), and in any

fixed bounded subset of Rd,

ψ(x)− ψ(m)(x) = O(1/m2).
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Proof. Since ψ is harmonic on Rd, each ψj is harmonic on Rd, so each term Ξ(ψj)(mx)
in the first sum defining ψ(m)(x) is discrete harmonic on 1

mZd; the second sum is a

constant that does not depend on x, so ψ(m) is discrete harmonic on 1
mZd.

Since ψj(x) = ψj(mx)/mj and ψj = Ξψj for j = 0, 1 we have

ψ(x)− ψ(m)(x) =
k∑
j=2

ψj(mx)− Ξψj(mx)− Ξψj(0)

mj
.

By Lemma 2.1 the numerator is a polynomial in mx of degree at most j−2, so each
term in the sum is O(mj−2/mj) = O(1/m2).

Finally, we have ψ(m)(0) = 1
mΞ(ψ1)(0) + Ξ(ψ0)(0) = ψ0(0) = ψ(0), where we

have used the fact that ψ1 = Ξψ1 is homogeneous of degree 1.

2.3 General-dimensional CLT: Proof of Theorem 1.4

We have defined a discrete time IDLA cluster At = Abtc in which new particles arrive
at integer times, and a continuous time cluster AT (t) where they arrive at Poisson
random times. Both of these are “jump” processes: the former changes suddenly
at integer times, and the latter at Poisson times. For the proof of Theorem 1.4, we
introduce a smoother continuous time process Ãt (used already in [JLS12a]) that
interpolates {An}n∈N.

To define Ã, let G denote the grid comprised of the edges connecting nearest
neighbor vertices of Zd. (As a set, G consists of the points in Rd with at most one
non-integer coordinate.) Now suppose that at each integer time n, a new particle

is added at the origin and performs a Brownian motion {B(n)
t }t≥n on G (instead of

simple random walk on Zd), starting at B
(n)
n = 0 and stopping at time Tn when it

first hits the set Zd \An. By applying a deterministic time change to the Brownian
motion (using for instance the function t 7→ 2

π arctan t which sends [0,∞) to [0, 1)),
we can ensure that Tn < n+ 1. Then for t ∈ [n, n+ 1) we set

Ãt := An ∪ {B(n)
t∧Tn}.

Thus Ãt consists of Abtc plus a single additional point, the location of the currently

active particle; note that Ãt is a multiset at those times t when B
(n)
t ∈ An.

Now let f be a discrete harmonic polynomial on Zd with f(0) = 0. Extend f
linearly along each segment of the grid G, and define

Y (t) =
∑
x∈Ãt

f(x), Z(t) =
∑
x∈Ãt

f(x)2. (16)

For n ≤ s < t ≤ n+ 1 we have Y (t)− Y (s) = F (t)− F (s), where F (t) = f(B
(n)
t∧Tn).

Since f is discrete harmonic and linear on segments of G, we have that F is a
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martingale, and hence Y is a martingale. Let

S(t) := lim
0=t0<t1<···<tn=t
|ti+1−ti|→0

n−1∑
i=0

(Y (ti+1)− Y (ti))
2.

be the quadratic variation of Y on the interval [0, t] (the limit is in the sense of
convergence in probability). Write Ft = σ(Ãs|s ≤ t). Then for n ≤ s < t ≤ n + 1
we have

E[S(t)− S(s)|Fs] = E[(F (t)− F (s))2|Fs]
= E[F (t)2 − F (s)2|Fs]
= E[Z(t)− Z(s)|Fs].

Thus the process
N(t) := S(t)− Z(t) (17)

is a martingale, a fact that will be useful in the proof below.
Finally, to accommodate Poisson arrivals in the above discussion, write tn =

inf {t : T (t) ≥ n} for the time of the n-th particle’s arrival at 0. Let T̃ be the
random function that coincides with T at all times tn and is linear on each interval
[tn, tn+1] for n ∈ N. Then Ã

T̃ (tn)
= AT (tn) for n ∈ N.

Define Ỹ and Z̃ by substituting T̃ (t) for t in (16). We now check that Ỹ (t)
is a martingale adapted to the filtration F̃t := σ{Ã

T̃ (s)
|s ≤ t}, Note that if f is a

polynomial of degree `, then for any connected set A ⊂ Zd of size k+1 containing the
origin we have

∑
x∈A |f(x)| ≤ Ck`+1. By conditioning on the value of the Poisson

random variable T (t), we find

E|Ỹ (t)| ≤
∞∑
k=0

e−t
tk

k!
Ck`+1 <∞

and similarly by conditioning on the value of T (t)− T (s), we obtain for s < t

E(Ỹ (t)− Ỹ (s)|F̃s) = 0.

The quadratic variation of Ỹ is given by S̃(t) := S(T̃ (t)). Therefore letting Ñ(t) :=
S̃(t)− Z̃(t) we also have Ñ(t) = N(T̃ (t)).

Proof of Theorem 1.4. Fix m > 0 and a harmonic polynomial ψ ∈ R[x1, . . . , xd].
We consider first the case ψ(0) = 0. The process

Mm(t) := m−d/2
∑

x∈Ã
T̃ (mdt)

ψ(m)(x/m)
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is a martingale in t. This Mm is identical to Φm
A of (7) except that it uses the

modified process Ã
T̃

in place of AT . We fix tk > 0 and compare the processes
Mm(·) and Φm

A (·) on the interval [0, tk].
The difference Mm(t) − Φm

A (t) equals m−d/2ψ(m)(Xt) for a single point Xt ∈
1
mAT (mdt). Let Em be the event that 1

mAmdtk is contained in the origin-centered ball
of volume 2tk. By the At fluctuation bounds in [JLS12a, JLS12b], the complemen-
tary event has probability decaying faster than any power of m:

ma P (Ecm)→ 0 (18)

as m→∞ for all a ∈ R. Since T (mdt) is Poisson with mean mdt, we have T (mdt) ≤
2mdt with probability tending to 1 as m→∞. Therefore with probability tending
to 1 as m→∞ we have Xt ∈ B for all t ≤ tk, where B is the origin-centered ball of
volume 4tk. Recalling that ψ(m) − ψ = O(1/m) on B, we have that

ψ(m) ≤ 2ψ (19)

on B for all sufficiently large m. It follows that Mm−Φm
A → 0 in law as m→∞, as

processes on [0, tk]. Thus, it suffices to prove the theorem with Mm in place of Φm
A .

By the martingale representation theorem (see [RY05, Theorem V.1.6]), we can
write Mm(t) = β(Sm(t)), where β is a standard Brownian motion and Sm(t) is the
quadratic variation of Mm on the interval [0, t]. To show that Mm(t) converges in
law as m→∞ to a Gaussian with variance V :=

∫
Br(t)(0) ψ(x)2dx where Br(t)(0) is

the origin-centered ball of volume t, it suffices to show that for fixed t the random
variable Sm(t) converges in law to V .

By standard Riemann integration and the At fluctuation bounds in [JLS12a,
JLS12b] (the weaker bounds of [LBG92] would also suffice here) along with the fact
that T̃ (tmd)/md → t in law, we know that

Zm(t) := m−d
∑

x∈Ã
T̃ (tmd)

ψ(m)(x/m)2 → V

in law as m→∞. Thus it suffices to show that

Nm(t) := Sm(t)− Zm(t)

converges in law to zero.
Recalling that f(x) := m−d/2ψ(m)(x/m) is a discrete harmonic function on Zd,

write Y (s) =
∑

x∈Ãs f(x) and define Z, S, and N = S − Z as in (16) and (17).

Note that these processes are associated to the cluster Ãs with integer time arrivals,
whereas Ym, Zm, Sm, Nm are associated to the cluster with Poisson arrivals. By
definition, Zm(t) = Z(T̃ (tmd)). Moreover, since the quadratic variation of a time
change is the time change of the quadratic variation, we have Sm(t) = S(T̃ (tmd)).
Hence Nm(t) = N(T̃ (tmd)).
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Let s = tmd. The expected square of N(s) is the sum of the expectations of the
squares of its increments N(n) − N(n − 1) for n = 1, . . . , bsc and N(s) − N(bsc).
We will show that each of these expected squared increments is O(m−2d), so that
EN(s)2 = O(m−d). Thus the process {N(s)}s≥0 tends to zero in law as m → ∞,
and so does its time change {Nm(t)}t≥0.

To derive the promised bound on the expected squared increments, note first that
if n−1 ≤ s < n then E(N(s)−N(bsc))2 = E(N(n)−N(n−1))2−E(N(n)−N(s))2 ≤
E(N(n) − N(n − 1))2, so it suffices to bound E(N(n) − N(n − 1))2 for integer n.
Now E(N(n)−N(n− 1))2 ≤ 2 E (Z(n)− Z(n− 1))2 + 2 E (S(n)− S(n− 1))2 and
we will bound the two terms separately. Writing Xn = An \An−1 for the nth point
to join the internal DLA cluster, we have

E(Z(n)− Z(n− 1))2 = m−2d E ψ(m)(Xn/m)4.

By (18) and (19) the right side is O(m−2d).
It remains to show that E(S(n) − S(n − 1))2 is also O(m−2d). As in [JLS12a,

Lemma 9], the increment S(n)−S(n− 1) is stochastically dominated by the time τ
for a standard Brownian motion to exit the interval [−an, bn], where −an and bn
are the minimum and maximum values of f(x) = m−d/2ψ(m)(x/m) on the cluster

boundary ∂An−1. By (19), on the event Em we have that an and bn are O(m−d/2),
hence E(S(n)− S(n− 1))2 ≤ Eτ2 = O(m−2d) as desired.

To remove the assumption ψ(0) = 0, consider first the case ψ ≡ 1. We have

Φm
A (1, t) =

T (mdt)−mdt

md/2
.

By the central limit theorem for the Poisson random variable T (mdt), the right side
tends in law as m→∞ to a centered Gaussian of variance t, in agreement with (5).

For the general case let ψ = ξ + c where c is a constant and ξ(0) = 0. Since
Φm
A (ψ, t) is linear in the ψ variable (recall ψ(m) is defined in (15) by applying a linear

operator to ψ) we have Φm
A (ψ, t) = Φm

A (ξ, t) + cΦm
A (1, t). We now show that these

two terms are asymptotically independent, using the fact that the Poisson T (mdt)
is concentrated around its mean. Indeed, the sum

Φm
A (ξ, t) = m−d/2

∑
x∈A

T (mdt)

ξ(m)(x/m)

if taken over Amdt instead would be independent of T and hence of Φm
A (1, t); so for

the asymptotic independence it suffices to check that

R(t) := m−d/2

 ∑
x∈A

T (mdt)

−
∑

x∈A
mdt

 ξ(m)(x/m)
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converges in law to 0 as m → ∞. We have R(t) = Y (T (mdt)) − Y (mdt) where
Y (n) = m−d/2

∑
x∈An ξ(m)(x/m). Since Y is a martingale, ER(t)2 is the sum of

the expected squared increments E(Y (n+ 1)−Y (n))2 over integer times n between
bmdtc and T (mdt), so that

ER(t)2 = m−d E
∑
x∈∆

ξ(m)(x/m)2

where ∆ = (AT (mdt) \ Amdt) ∪ (Amdt \ AT (mdt)). By (19), on the event Em each

term in the sum on the right side is at most C = supB 4ξ2. Hence ER(t)2 ≤
m−dC E |T (mdt)−mdt| ≤ m−dC(mdt)1/2 which indeed tends to 0 as m→∞.

We conclude that the pair (Φm
A (ξ, t),Φm

A (1, t)) tends in law as m→∞ to a pair of
independent centered Gaussians of variance V =

∫
Br(t)(0) ξ(x)2dx and t respectively.

The linear combination Φm
A (ψ, t) is therefore a centered Gaussian with variance

V + c2t. To check agreement with (5), note that
∫
Br(t)(0) ξ(x)dx = ξ(0)t = 0 since ξ

is harmonic, so
∫
Br(t)(0)(ξ(x) + c)2dx = V + c2t.

Similarly, suppose we are given 0 = t0 < t1 < t2 < . . . < t` and functions
ψ1, ψ2, . . . ψ`. The same argument as above, using the martingale in t,

m−d/2
∑̀
j=1

∑
x∈Ã

T̃ (md(t∧tj))

ψj,(m)(x/m)

implies that
∑`

j=1 Φm
A (ψj , tj) converges in law to a Gaussian with variance

∑̀
j=1

∫
Br(tj)\Br(tj−1)

∑̀
i=j

ψi(x)

2

dx.

The theorem now follows from a standard fact about Gaussian random variables on
a finite dimensional vector spaces (proved using characteristic functions): namely, a
sequence of random variables on a vector space converges in law to a multivariate
Gaussian if and only if all of the one-dimensional projections converge. The law of h
is determined by the fact that it is a centered Gaussian with covariance given by
(4).

3 Dimension two

3.1 Two dimensional central limit theorem

Recall that At for t ∈ Z+ denotes the discrete-time IDLA cluster with exactly t sites,
and AT = AT (t) for t ∈ R+ denotes the continuous-time cluster whose cardinality is
Poisson-distributed with mean t.
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For z ∈ Z2, let
F0(z) := inf{t : z ∈ At}

be the first time that z joins the cluster. Consider the lateness function

L0(z) :=
√
F0(z)/π − |z|.

The random variable L0(z) is negative if z joins the cluster early and positive if z
joins the cluster late. The goal of this section is to prove a central limit theorem for
functionals of L0, Theorem 3.1 below.

Fix N <∞, and consider a test function of the form

φ(reiθ) =
∑
|k|≤N

ak(r)e
ikθ (20)

where the ak are smooth functions supported in an interval 0 < r0 ≤ r ≤ r1 < ∞.
We will assume, furthermore, that φ is real-valued. That is, the complex numbers
ak satisfy

a−k(r) = ak(r).

Theorem 3.1. Let

XR :=
1

R2

∑
z∈(Z+iZ)/R

L0(Rz)
φ(z)

|z|2
. (21)

Then XR → N(0, V0) in law as R→∞, where

V0 =
∑

0<|k|≤N

2π

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)
(ρ
r

)|k|+1 dr

r

∣∣∣∣2 dρρ . (22)

Before proving Theorem 3.1, we explain how it can be interpreted as saying that
L0(Rz) tends weakly to the Gaussian random distribution hnr associated to the
Hilbert space closure H1

nr of the set of smooth functions η : R2 → R with the norm

‖η‖2nr =
∑

0<|k|<∞

2π

∫ ∞
0

[|r∂rηk(r)|2 + (|k|+ 1)2|ηk(r)|2]
dr

r

where

ηk(r) =
1

2π

∫ 2π

0
η(reiθ)e−ikθdθ.

(The subscript nr means nonradial: H1
nr is the orthogonal complement of radial

functions in the Sobolev space H1.) We will see below that the factor of 1/|z|2
in (21) is natural from the point of view of a change of variables y = log r where
z = reiθ.
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We first consider a simpler space. For fixed q > 0, let Hq be the Hilbert space
closure of the set of smooth compactly supported functions f : R → R with inner
product and norm

(f, g)q :=

∫ ∞
−∞

(f ′(y)g′(y) + q2f(y)g(y))dy, ‖f‖2q = (f, f)q.

Lemma 3.2. For ψ ∈ L2(R) of compact support, q > 0, denote

‖ψ‖q,∗ = sup

∫ ∞
−∞

ψ(y)f(y)dy,

where the supremum is over all f ∈ Hq subject to the constraint

(f, f)q ≤ 1.

Then

‖ψ‖2q,∗ =

∫ ∞
−∞

∣∣∣∣∫ ∞
s

ψ(y)eq(s−y)dy

∣∣∣∣2 ds. (23)

Proof. Define

Ψ(s) =

∫ ∞
s

ψ(y)e−qy dy

Note that ∫ ∞
−∞

∣∣∣∣∫ ∞
s

ψ(y)eq(s−y)dy

∣∣∣∣2 ds =

∫ ∞
−∞

Ψ(s)2e2qs ds

Let f ∈ C∞0 (R) such that (f, f)q ≤ 1. Then

eqyf(y) =

∫ ∞
−∞

eqs(f ′(s) + qf(s)) ds

and ∫ ∞
−∞

ψ(y)f(y) dy =

∫ ∞
−∞

(ψ(y)e−qy)(eqyf(y)) dy

=

∫ ∞
−∞

(ψ(y)e−qy)

∫ ∞
s

eqs(f ′(s) + qf(s)) ds dy

=

∫ ∞
−∞

Ψ(s)eqs(f ′(s) + qf(s)) ds

≤
(∫ ∞
−∞

Ψ(s)2e2qs ds

)1/2(∫ ∞
−∞

(f ′(s) + qf(s))2 ds

)1/2

≤
(∫ ∞
−∞

Ψ(s)2e2qs ds

)1/2

.
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The last inequality follows because the integral on R of the cross term ff ′ is zero,
so that ∫ ∞

−∞
(f ′(s) + qf(s))2 ds =

∫ ∞
−∞

f ′(s) + q2f(s)2 ds = (f, f)q ≤ 1

Since f was arbitrary, this establishes the first half of (23),

‖ψ‖q,∗ ≤
(∫ ∞
−∞

Ψ(s)2e2qs ds

)1/2

.

For the opposite inequality, consider ψ ∈ L2(R) supported in [−K,K]. Then Ψ
(defined above) satisfies Ψ(s) = 0 for all s > K and Ψ(s) = c for some constant c
for all s < −K. Define

f(y) = e−qy
∫ y

−∞
Ψ(s)e2qs ds.

Because q > 0 this integral is convergent. Furthermore, f(y) is a constant multiple
of e−qy for y > K, and for y < −K, f(y) is a multiple of eqy. It follows that f can
be approximated in ‖ · ‖q norm by C∞0 (R) functions. By Fubini’s theorem,∫ ∞

−∞
ψ(y)f(y) dy =

∫ ∞
−∞

Ψ(y)2e2qy dy.

Hence, ∫ ∞
−∞

Ψ(y)2e2qydy ≤ ‖f‖q‖ψ‖q,∗.

Next,
d

dy
(eqyf(y)) = Ψ(y)e2qy =⇒ (f ′(y) + qf(y)) = Ψ(y)eqy,

and, consequently,∫ ∞
−∞

Ψ(y)2e2qydy =

∫ ∞
−∞

(f ′(y) + qf(y))2 dy = (f, f)q

where we have used once again that the integral of the cross term ff ′ on R is zero.
It follows that (∫ ∞

−∞
Ψ(y)2e2qydy

)1/2

≤ ‖ψ‖q,∗

which is the second half of the inequality (23).

Lemma 3.3. Let φ be a test function of the form (20), and define

‖φ‖∗ = sup
η

∫
R2

η(z)
φ(z)

|z|2
dz
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where the supremum is taken over all η ∈ H1
nr with ‖η‖nr ≤ 1. Then

‖φ‖2∗ = V0

where V0 is given by (22).

Proof. Recall that a−k = āk and η−k = η̄k. Writing the integral in polar coordinates
z = reiθ and substituting y = log r, we obtain∫ 2π

0

∫ ∞
0

η(z)
φ(z)

r2
rdrdθ = 2π

∑
0<|k|≤N

∫ ∞
0

ak(r)η̄k(r)
dr

r

= 2π
∑

0<|k|≤N

∫ ∞
−∞

ψk(y)f̄k(y) dy

where ψk(y) := ak(e
y) and fk(y) := ηk(e

y). The constraint ‖η‖nr ≤ 1 is equivalent
to ∑

0<|k|<∞

∫ ∞
−∞

(|f ′k|2 + (|k|+ 1)2|fk|2)dy ≤ 1

2π
.

In the notation of Lemma 3.2, the summand is (fk, fk)|k|+1. For fixed ck > 0, the
supremum of

∫
ψkf̄k over all fk satisfying (fk, fk)|k|+1 ≤ c2

k is given by ckνk, where

νk = ‖ψk‖|k|+1,∗. Subject to the constraint
∑
c2
k ≤

1
2π , the sum

∑
0<|k|≤N ckνk is

maximized when ck = νk/(2π
∑
ν2
k)1/2, so that

‖φ‖∗ =
2π√
2π

 ∑
0<|k|≤N

‖ψk‖2|k|+1,∗

1/2

.

Changing variables back to r = ey in Lemma 3.2, the square of the right side equals
V0.

Remark. We can now give the promised interpretation of Theorem 3.1. For each
continuous linear functional Ψ on H1

nr, the random variable Ψ(hnr) is a centered
Gaussian of variance ‖Ψ‖2, where

‖Ψ‖ = sup{Ψ(η) : ‖η‖nr ≤ 1}.

By the definition of ‖φ‖∗, the functional Ψφ(η) :=
∫
R2 η(z)φ(z)

|z|2 dz has norm ‖Ψφ‖ =

‖φ‖∗, so Ψφ(hnr) has variance ‖φ‖2∗ = V0.

To begin the proof of Theorem 3.1, let p0(z) = 1, and for k ≥ 1 let pk(z) =
qk(z)− qk(0), where

qk(z) = Ξ[zk]
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is the discrete harmonic polynomial associated to zk = (x + iy)k as described in
§2.2. The sequence pk begins

1, z, z2, z3 − 1

4
z̄, z4 − zz̄, . . . .

For instance, to compute p3, we expand

z3 = x3 − 3xy2 + i
[
3x2y − y3

]
and apply Ξ to each monomial, obtaining

p3(z) = (x−1)x(x+ 1)−3x(y− 1

2
)(y+

1

2
) + i

[
3(x− 1

2
)(x+

1

2
)y − (y − 1)y(y + 1)

]
which simplifies to z3− 1

4 z̄. One readily checks that this defines a discrete harmonic
function on Z + iZ. (In fact, z3 is itself discrete harmonic, but zk is not for k ≥ 4.)
To define pk for negative k, we set p−k(z) = pk(z). This is a natural choice because
it is a discrete harmonic polynomial; in fact, {pk}k∈Z is a basis for the discrete
harmonic polynomials on Z2.

Define

ψ(z, t, R) =
N∑

k=−N
ak(
√
t/πR2)pk(z)(

√
t/π)−|k|

and
ψ0(z, t, R) = ψ(z, t, R)− a0(

√
t/πR2). (24)

Lemma 3.4. If c1R
2 ≤ t ≤ c2R

2 and ||z| −
√
t/π| ≤ C logR, and R is sufficiently

large, then
|ψ(z, t, R)− φ(z/R)| ≤ C(logR)/R.

Proof. First observe that the hypotheses of the lemma imply

|pk(z)(
√
t/π)−|k| − (z/|z|)k| ≤ Ck(logR)/R (25)

for all k ∈ Z. Indeed, for k ≥ 0 we have |(
√
t/π)−k − |z|−k| ≤ Ck(logR)R−k−1, and

|pk(z)− zk| ≤ CkR
k−1 by Lemma 2.1. Combining these two bounds yields (25) for

k ≥ 0; the case k < 0 now follows from p−k(z) = pk(z) and (z̄/|z|)k = (z/|z|)−k.
Now since the coefficients ak are smooth, |ak(

√
t/πR2)−ak(|z|/R)| ≤ C(logR)/R.

This bound, combined with (25) yields Lemma 3.4.

Lemma 3.5. (Van der Corput) If t ≥ 1, then

(a) |#{z ∈ Z + iZ : π|z|2 ≤ t} − t| ≤ C0t
1/3.

(b) For k ≥ 1,

t−k/2

∣∣∣∣∣ ∑
z∈Z+iZ

zk 1π|z|2≤t

∣∣∣∣∣ ≤ Ckt1/3.
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(c) For k ≥ 1,

t−k/2

∣∣∣∣∣ ∑
z∈Z+iZ

pk(z) 1π|z|2≤t

∣∣∣∣∣ ≤ Ckt1/3.
Part (a) of this lemma was proved by van der Corput in the 1920s (See [GS10],

Theorem 87 p. 484). Part (b) follows from the same method, and we defer the proof
to §3.3. Part (c) follows from part (b) and the stronger estimate of Lemma 2.1,
|pk(z)− zk| ≤ Ck|z|k−2 for k ≥ 2 (and p1(z)− z = 0).

Now we have assembled the necessary ingredients to prove Theorem 3.1. Write
the lateness function in the form

L0(z) =
1

2
√
π

∫ ∞
0

(1− 1At(z))t
1/2dt

t
− 1

2
√
π

∫ ∞
0

(1− 1π|z|2≤t)t
1/2dt

t

=
1

2
√
π

∫ ∞
0

(1π|z|2≤t − 1At(z))t
1/2dt

t
.

The random variable XR appearing in Theorem 3.1 then takes the form

XR =
∑

z∈Z+iZ
L0(z)

φ(z/R)

|z|2

=
1

2
√
π

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1At(z))
φ(z/R)

|z|2
t1/2

dt

t

=
1

2
√
π

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1At(z))
ψ(z, t, R)

t/π
t1/2

dt

t
+ ER.

To estimate the error term ER, note first that since the coefficients ak are supported
in a fixed annulus, the integrand above is supported in the range c1R

2 ≤ t ≤
c2R

2. Furthermore, by [JLS12a], there is an absolute constant C such that for all
sufficiently large R and all t in this range, the difference 1π|z|2≤t−1At(z) is supported

on the set of z ∈ Z2 such that ||z| −
√
t/π| ≤ C logR. Thus∑

z∈Z+iZ
|1π|z|2≤t − 1At(z)| ≤ KR logR.

Moreover, Lemma 3.4 applies and

|ER| ≤ C
∫ c2R2

c1R2

(R logR)
logR

R
t−1/2dt

t
= O((logR)2/R).

Next, Lemma 3.5(a) says (since #At = t)∣∣∣∣∣ ∑
z∈Z+iZ

1π|z|2≤t − 1At(z)

∣∣∣∣∣ ≤ Ct1/3.
29



Thus replacing ψ by ψ0 gives an additional error of size at most

C

∫ c2R2

c1R2

t1/3t−1/2dt

t
= O(R−1/3).

In all,

XR =

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1At(z))ψ0(z, t, R)t−1/2dt

t
+O(R−1/3) (26)

Now for s = 0, 1, . . . , consider the process

MR(s) =

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1As∧t(z))ψ0(z, t, R)t−1/2dt

t

By (26), XR −MR(c2R
2) → 0 in probability as R → ∞. Note also that Lemma

3.5(c) implies
MR(0) = O(R−1/3).

The proof will be completed by showing that MR(c2R
2)−MR(0)→ N(0, V0) in law.

As outlined below, this will follow from the martingale central limit theorem.
We first show thatMR(s) is a martingale adapted to the filtration Fs = {As′}s′≤s.

We have

MR(s)−MR(s− 1) = −
√
π

2

∫ ∞
s

ψ0(Zs, t, R)t−1/2dt

t
(27)

where Zs is the sth point to join the internal DLA cluster: As \ As−1 = {Zs}. Re-
calling the definition (24) of ψ0, the right side has the form

∑
1≤|k|≤N pk(Zs)fk(t, R)

where the fk are functions of t and R only. Because the pk are discrete harmonic
and pk(0) = 0 for all k 6= 0, we have

E(pk(Zs)|Fs−1) = pk(0) = 0.

Here the first equality is optional stopping for the martingale pk(Xn) where Xn is
simple random walk in Zd started at 0 and stopped on exiting As−1. Summing over
1 ≤ |k| ≤ N we obtain E(MR(s)−MR(s− 1)|Fs−1) = 0 as desired.

We now use the martingale central limit theorem in the form proved by McLeish
[McL74, Theorem 2.3] for the difference array XR,s := MR(s) −MR(s − 1). This
says that if

(i) E
(

maxsX
2
R,s

)
is uniformly bounded

(ii) maxs |XR,s| → 0 in probability as R→∞

(iii)
∑∞

s=0 |XR,s|2 → V0 in probability as R→∞
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then
∑

sXR,s → N(0, V0) in law. A detailed discussion of various alternative hy-
potheses in the martingale CLT can be found in [HH80, §3].

Let AR be the event that |Zs| ≤ 2
√
s/π for all s ≤ c2R

2. By [JLS12a] we have
P(AcR)→ 0 faster than any power of R. Since pk is a polynomial of degree k, on the
event AR we have |pk(Zs)|(t/π)−|k|/2 ≤ Ck for s ≤ t ≤ c2R

2. Since each term in the
sum (24) is upper bounded by a constant, we have

|ψ0(Zs, t, R)| ≤ C, for s ≤ t ≤ c2R
2.

Recalling (20) that our test function φ is supported in an annulus, the function ψ0

given by (24) vanishes unless c1R
2 ≤ t ≤ c2R

2. By (27), we have on the event AR

|M(s)−M(s− 1)| ≤ C
∫ c2R2

c1R2

t−1/2dt

t
= O(1/R)

which confirms hypotheses (i) and (ii) of the martingale CLT.
Because At fills the lattice Z + iZ as t→∞, we have from (27)

∞∑
s=0

|M(s)−M(s− 1)|2

=
∑

z∈Z+iZ

∣∣∣∣∣∣
√
π

2

∫ ∞
F0(z)

∑
0<|k|≤N

ak(
√
t/πR2)pk(z)(t/π)−|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

. (28)

We will prove (iii) in three steps: replace pk(z) in (28) by zk (or z̄|k| if k < 0);
replace the lower limit F0(z) by π|z|2; replace the sum of z over lattice sites with
the integral with respect to area measure in the complex z-plane.

Denote

γk(z) =

∫ ∞
F0(z)

ak(
√
t/πR2)pk(z)t

−|k|/2t−1/2dt

t
.

On the event AR, there is a constant c3, depending on c2, such that if |z| ≥ c3R,
then F0(z) ≥ c2R

2. Recalling that ak(
√
t/πR2) vanishes unless c1R

2 ≤ t ≤ c2R
2,

we have for such values of z that γk(z) = 0 for all k. Thus we may assume from
now on that the sum on the right side of (28) is taken over lattice points |z| ≤ c3R.
For such z,

|pk(z)t−|k|/2| ≤ C, c1R
2 ≤ t ≤ c2R

2

and |γk(z)| = O(1/R).
Define

γ1
k(z) =

∫ ∞
F0(z)

ak(
√
t/πR2)zkt−k/2t−1/2dt

t
(k ≥ 0)
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and for k < 0. Define γ1
k(z) similarly with z̄|k|t−|k|/2 replacing zkt−k/2. By Lemma 2.1,

pk = zk for k = 0, 1, p−1(z) = z̄. Thus we have for all |z| ≤ c3R,

|pk(z)− zk|(t/π)−k/2 ≤ Ckt−1 = O(1/R2) (k ≥ 0);

|pk(z)− z̄|k||(t/π)−|k|/2 ≤ Ckt−1 = O(1/R2) (k < 0).

Hence

|γk(z)− γ1
k(z)| ≤ O(1/R2)

∫ c2R2

c1R2

t−1/2dt

t
= O(1/R3)

It follows that ∣∣∣∣∣∣
∑

0<|k|≤N

γk(z)

∣∣∣∣∣∣
2

−

∣∣∣∣∣∣
∑

0<|k|≤N

γ1
k(z)

∣∣∣∣∣∣
2

= O(1/R4)

Since we are summing over O(R2) values of z, we see that we can replace pk(z) by
zk in (28) at the expense of an error of size O(1/R2).

Let A′R be the event such that, in addition to AR,

|F0(z)− π|z|2| ≤ CR logR, for all |z| ≤ c3R

By [JLS12a], the complement of A′R has probability at most R−a, where the expo-
nent a can be taken arbitrarily large by taking C sufficiently large. Define

γ2
k(z) =

∫ ∞
π|z|2

ak(
√
t/πR2)zkt−k/2t−1/2dt

t

(Define γ2
k(z) similarly with z̄|k|t−|k|/2 replacing zkt−k/2.) On the event A′R, for

|z| ≤ c3R,

|γ1
k(z)− γ2

k(z)| ≤
∫ π|z|2

F0(z)
1{c1R2≤t≤c2R2}t

−1/2dt

t
= O((logR)/R2).

Thus ∣∣∣∣∣∣
∑

0<|k|≤N

γ1
k(z)

∣∣∣∣∣∣
2

−

∣∣∣∣∣∣
∑

0<|k|≤N

γ2
k(z)

∣∣∣∣∣∣
2

= O((logR)/R3)

and since we are summing over O(R2) terms, we can replace the lower limit F0(z)
by π|z|2 in (28) at the expense of an error of size O((logR)/R).

Lastly, we replace the value at each site z0 by the integral

∫
Qz0

∣∣∣∣∣∣
∑

0<|k|≤N

γ2
k(reiθ)

∣∣∣∣∣∣
2

rdrdθ
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where Qz0 is the unit square centered at z0 and we have substituted z = reiθ. For
this purpose, consider z ∈ Qz0 . Then |z − z0| ≤

√
2, and

|zk − zk0 | ≤ 4k(|z|+ |z0|)k−1 = O(Rk−1), (k ≥ 1)

and we obtain
|γ2
k(z)− γ2

k(z0)|] ≤ O(1/R)

(In addition to replacing zk0 by zk, we are also replacing the lower limit in the integral
π|z0|2 by π|z|2. But this changes the limit by

π||z|2 − |z0|2| = O(R)

Recall that in the previous step we previously changed the lower limit by O(R logR).
Thus by the same argument, this smaller change gives rise to an error of order
O(((logR)/R) in the full sum)

In all, up to errors of order O((logR)/R), we have replaced the expression in
(28) by a deterministic quantity,

∫ 2π

0

∫ ∞
0

∣∣∣∣∣∣
√
π

2

∫ ∞
πr2

∑
0<|k|≤N

ak(
√
t/πR2)r|k|eikθ(t/π)−|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

rdrdθ

Integrating in θ and changing variables from r to ρ = r/R,

=
π2

2

∑
0<|k|≤N

∫ ∞
0

∣∣∣∣∫ ∞
πρ2R2

ak(
√
t/πR2)(Rρ)|k|+1(t/π)−|k|/2t−1/2dt

t

∣∣∣∣2 dρρ
Then change variables from t to r =

√
t/πR2 to obtain

= 2π
∑

0<|k|≤N

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)(ρ/r)
|k|+1dr

r

∣∣∣∣2 dρρ = V0.

This completes the proof of Theorem 3.1.

3.2 Proof of Theorem 1.2

Next we adapt Theorem 3.1 to the continuous time cluster AT . The corresponding
lateness function L(z) was defined in §1.3. Letting φ be a test function of the form
(20), the a0 coefficient now figures in the limit formula as follows.

Theorem 3.6. As R→∞,

1

R2

∑
z∈(Z+iZ)/R

L(Rz)
φ(z)

|z|2
−→ N(0, V )
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in law, where

V =
∑
|k|≤N

2π

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)
(ρ
r

)|k|+1 dr

r

∣∣∣∣2 dρρ . (29)

Analogously to the remark following Theorem 3.1, we can interpret Theorem 3.6
as saying that that L(Rz) tends weakly to the Gaussian random distribution h
associated to the Hilbert space H1 with norm

‖η‖2 =
∞∑

k=−∞
2π

∫ ∞
0

[|r∂rηk|2 + (|k|+ 1)2|ηk|2]
dr

r

where the term k = 0 corresponding to the radial function η0 is now included in
the sum. This random distribution is precisely the 2-dimensional augmented GFF.
To see why, consider the harmonic polynomial ψ(z) = 1√

2π
zk and the corresponding

random variable Φh(ψ, t) obtained by integrating hψ over the surface of the origin-
centered circle ∂BR(0) enclosing area t. If φ(z)/|z|2 = δ(|z|−R)ψ(z) (note that this
φ is not in the class of test functions for which we prove convergence; we are using it
only for the purpose of checking that h is the augmented GFF) then (29) becomes

V = 2π

∫ ∞
0

∣∣∣∣∫ ∞
ρ

δ(r −R)
1√
2π
rk+2

(ρ
r

)k+1 dr

r

∣∣∣∣2 dρρ .
The inner integral vanishes unless ρ ≤ R, leaving

V =

∫ R

0
ρ2(k+1)dρ

ρ
=
R2k+2

2k + 2

in agreement with the variance calculation (13) in the case d = 2.
As in the proof of Theorem 1.4, the convergence in law of all one-dimensional

projections to the appropriate normal random variables implies the corresponding
result for the joint distribution of any finite collection of such projections. Hence,
Theorem 3.6 is a restatement of Theorem 1.2.

By way of comparison, the usual Gaussian free field is the one associated to the
Dirichlet norm ∫

R2

|∇η|2dxdy =
∞∑

k=−∞
2π

∫ ∞
0

[|r∂rηk|2 + k2|ηk|2]
dr

r
.

Comparing these two norms, we see that the second term in ‖η‖2 has an additional
+1, hence our choice of the term “augmented Gaussian free field.” As derived in
§1.5, this +1 results in a smaller variance 1

2k+dR
2k+d in each spherical mode of

degree k of the augmented GFF, as compared to 1
2k+d−2R

2k+d for the usual GFF.
The surface area of the sphere is implicit in the normalization (11), and is accounted
for here in the factors 2π above.
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The proof of Theorem 3.6 follows the same idea as the proof of Theorem 3.1.
We replace At by the continuous time cluster AT (for T = T (t)), and we need to
find the limit as R→∞ of√

π

2

∫ ∞
0

(t− T (t))a0(
√
t/πR2)t−1/2dt

t

+

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1AT )ψ0(z, t, R)t−1/2dt

t

The error terms in the estimation showing this quantity is within O(R−1/3) of

1

R2

∑
z∈(Z+iZ)/R

L(Rz)
φ(z)

|z|2

are nearly the same as in the previous proof. We describe briefly the differences.
The difference between Poisson time and ordinary counting is

|#AT −#At| = |T (t)− t| ≤ Ct1/2 log t = O(R logR) almost surely

if t ≈ R2. It follows that for |z| ≈ R,

|F (z)− π|z|2| = O(R logR) almost surely

as in the previous proof for F0(z). Further errors are also controlled since we then
have the estimate analogous to the one above for At, namely∑

z∈Z+iZ
|1π|z|2≤t − 1AT | ≤ CR logR

We consider the continuous time martingale

M(s) =

√
π

2

∫ ∞
0

(s ∧ t− T (s ∧ t))a0(
√
t/πR2)t−1/2dt

t

+

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1ÃT̃ (s∧t)
)ψ0(z, t, R)t−1/2dt

t

where ÃT̃ is defined using Brownian motion on the grid in place of random walk,
as described in §2.3. Instead of using the martingale central limit theorem, we use
the martingale representation theorem. This says that the martingale M(s) when
reparameterized by its quadratic variation has the same law as Brownian motion.
We must show that almost surely the quadratic variation of M on 0 ≤ s < ∞ is
V +O(R−1/3).

lim
ε→0

E ((M(s+ ε)−M(s))2|AT (s))/ε

=
1

2π

∫ 2π

0

∣∣∣∣∣∣
√
π

2

∫ ∞
s

∑
|k|≤N

ak(
√
t/πR2)eikθ)(s/t)|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

dθ

+O(R−1/3)

35



Integrating with respect to s gives the quadratic variation V + O(R−1/3) after a
suitable change of variable as in the proof of Theorem 3.1.

3.3 Van der Corput bounds

This section is devoted to the proof of part (b) of Lemma 3.5.
We prove a generalization of part (b) to all dimensions. To formulate it, let Pk

be a harmonic polynomial on Rd that is homogeneous of degree k. Normalize so
that

max
x∈B
|Pk(x)| = 1

where B is the unit ball in Rd. In this discussion k will be fixed and the constants
are allowed to depend on k and d. We are going to show that for k ≥ 1,∣∣∣∣∣∣ 1

Rd

∑
|x|<R, x∈Zd

Pk(x)/Rk

∣∣∣∣∣∣ ≤ CR−1−α

where
α = 1− 2/(d+ 1).

In dimension d = 2 we take Pk(x) = (x1 + ix2)k; in this case α = 1/3, and
RdR−1−α = R2/3 ≈ t1/3, so we recover the claim of part (b).

The van der Corput theorem is the case k = 0. It says

(1/Rd)
∣∣∣#{x ∈ Zd : |x| < R

}
− vol (|x| < R)

∣∣∣ ≤ CR−1−α.

Let ε = 1/Rα.
Consider ρ a smooth, radial function on Rd with integral 1 supported in the unit

ball. Then define χ = 1B characteristic function of the unit ball. Denote

ρε(x) = ε−dρ(x/ε), χR(x) = R−dχ(x/R)

Then ∣∣∣∣∣∣
∑
x∈Zd

(χR ∗ ρε(x)− χR(x))Pk(x)/Rk

∣∣∣∣∣∣ ≤ CR−1−α

This is because χR ∗ ρε(x) − χR(x) is nonzero only in the annulus of width 2ε
around |x| = R in which (by the van der Corput bound) there are O(Rd−1ε) lattice
points. For each of these lattice points, the corresponding term in the sum is O(R−d)
(indeed, χR ∗ ρε(x) and χR(x) are O(R−d), and Pk(x)/Rk = O(1) since Pk has
degree k). Recalling our choice of ε = 1/Rα, the sum is O(R−dRd−1ε) = O(R−1−α)
as desired.
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The Poisson summation formula implies∑
x∈Zd

χR ∗ ρε(x)Pk(x)/Rk =
∑

ξ∈2πZd
[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)/Rk

in the sense of distributions. Since Pk is homogeneous of degree k ≥ 1, we have
Pk(0) = 0. Since Pk(x) is harmonic, its average with respect to the radial function
χR ∗ ρε is zero:

0 =

∫
(χR ∗ ρε)(x)Pk(x)dx = [χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)

∣∣∣
ξ=0

.

So our sum equals ∑
ξ 6=0, ξ∈2πZd

[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)/Rk.

The Fourier transform of a polynomial is a derivative of the delta function,
P̂k(ξ) = Pk(i∂ξ)δ(ξ). Thus

[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ) = Pk(i∂ξ)[χ̂R(ξ)ρ̂ε(ξ)] = Pk(i∂ξ)[χ̂(Rξ)ρ̂(εξ)]

By Leibniz’s rule, this is a sum of terms of the form

[Pk−`(i∂ξ)χ̂(Rξ)][Q`(i∂ξ)ρ̂(εξ)], ` = 0, 1, . . . , k

for some homogeneous polynomials Pj and Qj of degree j. The asymptotics of the
oscillatory integral

Pk−`(i∂ξ)χ̂(Rξ) = Rk−`
∫
|x|<1

Pk−`(x)e−iRx·ξdx.

are well known. For any fixed polynomial P they are of the same order of magnitude
as for P ≡ 1, namely

|Pk−`(i∂ξ)χ̂(Rξ)| ≤ CRk−`|Rξ|−(d+1)/2

This is proved by the method of stationary phase and can also be derived from well
known asymptotics of Bessel functions.3 Furthermore, since ρ is smooth and has
compact support, for any N there is CN such that

|Q`(i∂ξ)ρ̂(εξ)| ≤ CN ε`(1 + |εξ|)−N .

It follows that

|Pk(i∂ξ)χ̂(Rξ)| ≤ C
k∑
`=0

Rk−`ε`|Rξ|−(d+1)/2(1+|εξ|)−N ≤ CRk|Rξ|−(d+1)/2(1+|εξ|)−N

3Indeed, Jk(t) = O(t−1/2) as t → ∞, for all k ≥ 0. Moreover, χ̂(ξ) is a constant multiple of
|ξ|−d/2Jd/2(|ξ|), and (d/dt)(t−kJk(t)) = −t−kJk+1(t). (See, for instance, [SW70], page 153.)
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and we can majorize the sum (replacing the letter d by n so that it does not get
mixed up with the differential dr) by∫ ∞

1
(Rr)−(n+1)/2 rn−1dr

(1 + εr)N
≈
∫ 1/ε

1
(Rr)−(n+1)/2rn

dr

r

≈ R−(n+1)/2ε−(n−1)/2

= R−1−α.

(Recall d = n and α = 1− 2

d+ 1
.)

3.4 Fixed time fluctuations: Proof of Theorem 1.3

Theorem 1.3 follows almost immediately from the d = 2 case of Theorem 1.4 and
the estimates above. Consider (φ, Ẽt) where Ẽt is as in (8). What happens if we
replace φ with a function φ̃ that is discrete harmonic on the rescaled mesh m−1Zd
within a logm/m neighborhood of B1(0)? Clearly, if φ is smooth, we will have
φ − φ̃ = O(m−1 logm). Since there are at most O(md−1 logm) non-zero terms in
(8), the discrepancy in

(φ, Ẽt)− (φ̃, Ẽt) = O
(
m−d/2md−1(m−1 logm) logm

)
= O

(
md/2−2(logm)2

)
, (30)

which tends to zero as long as d ∈ {2, 3}.
The fact that replacing Et with Ẽt has a negligible effect follows from the above

estimates when d = 2. This may also hold when d = 3, but we will not prove it
here. Instead we remark that Theorem 1.3 holds in three dimensions provided that
we replace (2) with (8), and that the theorem as stated probably fails in higher
dimensions even if we make a such a replacement. The reason is that (8) is positive
at points slightly outside of Br (or outside of the support of wt) and negative at
points slightly inside. If we replace a discrete harmonic polynomial ψ with a function
that agrees with ψ on B1(0) but has a different derivative along portions of ∂B1(0),
this may produce a non-trivial effect (by the discussion above) when d ≥ 4.

Finally, we note that replacing ψm by ψ introduces an error of order m−2, and
the same argument as above gives

(ψ, Ẽt)− (ψ̃m, Ẽt) = O
(
m−d/2md−1m−2 logm

)
= O

(
md/2−3(logm)

)
, (31)

which tends to zero when d ∈ {2, 3, 4, 5}.
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