The Rotor-Router Model on Regular Trees

Itamar Landau and Lionel Levine
University of California, Berkeley

September 6, 2008

Abstract

The rotor-router model is a deterministic analogue of random walk.
It can be used to define a deterministic growth model analogous to
internal DLA. We show that the set of occupied sites for this model on
an infinite regular tree is a perfect ball whenever it can be, provided
the initial rotor configuration is acyclic (that is, no two neighboring
vertices have rotors pointing to one another). This is proved by defining
the rotor-router group of a graph, which we show is isomorphic to
the sandpile group. We also address the question of recurrence and
transience: We give two rotor configurations on the infinite ternary
tree, one for which chips exactly alternate escaping to infinity with
returning to the origin, and one for which every chip returns to the
origin. Further, we characterize the possible “escape sequences” for
the ternary tree, that is, binary words a; . .. a, for which there exists a
rotor configuration so that the k-th chip escapes to infinity if and only
if ap = 1.

1 Introduction

The rotor-router model is a deterministic analogue of random walk, first
defined by Priezzhev et al. under the name “Eulerian walkers” [10] and
popularized more recently by Jim Propp [5]. To define rotor-router walk on

The second author was supported by a National Science Foundation Graduate Re-
search Fellowship.

Key words: aggregation, recurrence, regular tree, rotor-router model, sandpile
group, transience

2000 Mathematics Subject Classifications: Primary 05C05; Secondary 05C25,
60G50

a tree T', for each vertex of T" we choose a cyclic ordering of its neighbors.
Each vertex is assigned a “rotor” which points to one of the neighboring
vertices. A chip walks on the vertices of T according to the following rule:
when the chip reaches a vertex v, the rotor at v rotates to point to the
next neighbor in the ordering, and the chip steps in direction of the newly
rotated rotor. In rotor-router aggregation, we grow a cluster of points in
T by repeatedly starting chips at a fixed vertex o and letting them walk
until they exit the cluster. Beginning with A; = {o}, define the cluster A,
inductively by
Ay = Ap—1 U{z,}, n>1

where x,, € T is the endpoint of a rotor-router walk started at o and stopped
on first exiting A,_1. We do not change the positions of the rotors when
adding a new chip. Thus the sequence (Ay,),>1 depends only on the choice
of the initial rotor configuration.

Recent interest has focused on rotor-router aggregation in the integer
lattice Z¢. Jim Propp noticed from simulations in Z? that the shape A, is
extremely close to circular, and asked why this was so [5]. The spherical
shape of A,, in Z¢ is proved in [7, 8]. Here we prove an analogous result for
rotor-router aggregation on the infinite d-regular tree. We say that a rotor
configuration is acyclic if the rotors form no oriented cycles. On a tree, this
condition is equivalent to forbidding oriented cycles of length 2: there is no
pair of neighboring vertices z,y such that both the rotor at x points to y
and the rotor at y points to z. As the following result shows, provided we
start with an acyclic rotor configuration, the occupied cluster A,, is a perfect
ball for suitable values of n.

Theorem 1.1. Let T be the infinite d-regqular tree, d > 3, and let
B, ={zeT: |z|<r}

be the ball of radius r centered at the origin o € T, where |x| is the number
of edges in the path from o to x. Write
d—1)" -1

Let A, be the region formed by rotor-router aggregation in T, starting from
n chips at o. If the initial rotor configuration is acyclic, then

Ay, = B,.

The proof of Theorem 1.1 uses the sandpile group of a wired regular tree
(that is, a finite regular tree with the leaves collapsed to a single vertex, and
an edge added from the root to this vertex), whose structure was found in
[6]. In section 2 we define the rotor-router group of a graph and show that
it is isomorphic to the sandpile group. We then use this isomorphism in
section 3 to prove Theorem 1.1.

Much previous work on the rotor-router model has taken the form of
comparing the behavior of rotor-router walk with the expected behavior
of random walk. For example, Cooper and Spencer [1] show that for any
configuration of chips on even lattice sites in Z?, letting each chip perform
rotor-router walk for n steps results in a configuration that differs by only
constant error at each point from the expected configuration had the chips
performed independent random walks. In section 4, we continue in this
vein by investigating the recurrence and transience of rotor-router walk on
trees. A walk which never returns to the origin visits each vertex only finitely
many times, so the positions of the rotors after a walk has escaped to infinity
are well-defined. We construct two “extremal” rotor configurations on the
infinite ternary tree, one for which walks exactly alternate returning to the
origin with escaping to infinity, and one for which every walk returns to the
origin. The latter behavior is something of a surprise: to our knowledge
it represents the first example of rotor-router walk behaving fundamentally
differently from the expected behavior of random walk.

In between these two extreme cases, a variety of intermediate behaviors
are possible. We say that a binary word a; ...a, is an escape sequence for
the infinite ternary tree if there exists an initial rotor configuration on the
tree so that the k-th chip escapes to infinity if and only if ap = 1. The
following result characterizes all possible escape sequences on the ternary
tree.

Theorem 1.2. Let a = aj...ay be a binary word. For j € {1,2,3} write
ald) = ;0130546 -... Then a is an escape sequence for some rotor configu-
ration on the infinite ternary tree if and only if for each j and each k > 2,
every subword of) of length 28 — 1 contains at most 25~ ones.

We conclude in section 5 with an open question about the transience of
rotor-router walk in Z% for d > 3.

2 The Rotor-Router Group

In this section we define the rotor-router group of a graph and show it
is isomorphic to the sandpile group. The definition of the sandpile group

is recalled below. In the next section we use this isomorphism together
with the results of [6] to study the rotor-router aggregation model on a
regular tree. The isomorphism between the rotor-router and sandpile groups,
Theorem 2.5, is mentioned in the physics literature; see [9, 10]. To our
knowledge the details of the proof are not written down anywhere. While
our main focus is on the tree, the isomorphism is just as easily proved for
general graphs, and it seems to us worthwhile to record the general proof
here.

Let G be a strongly connected finite directed graph, which may have
multiple edges but not loops. Fix a vertex s in G and call it the sink. To
define rotor-router walk on G, for each vertex x # s we fix a cyclic ordering
of the edges emanating from x. A rotor configuration T on G assigns to each
non-sink vertex x an edge T'(x) emanating from z. Each step of the walk
then consists of two parts: If the chip is located at x, we first increment the
rotor T'(z) to the next edge in the ordering of the edges emanating from =z,
and then move the chip along this new edge. Given a rotor configuration 7T,
write e, (T") for the rotor configuration resulting from starting a chip at =
and letting it walk according to the rotor-router rule until it reaches the
sink. (Note that if the chip visits a vertex infinitely often, it visits all of its
outbound neighbors infinitely often; since G is strongly connected, the chip
eventually reaches the sink.)

The set of edges {T'(z)},+s in a rotor configuration forms a spanning
subgraph of GG in which every vertex except the sink has out-degree one. If
this subgraph contains no directed cycles (equivalently, no cycles), we call
it an oriented spanning tree of G. Write Rec(G) for the set of oriented
spanning trees of G. Note that as we have defined them, oriented spanning
trees are always rooted at the sink (i.e., all paths in the tree lead to the
sink).

Lemma 2.1. If T € Rec(G), then e;(T') € Rec(G).

Proof. Let Y be any collection of vertices of G. If the chip started at x
reaches the sink without ever visiting Y, then the rotors at vertices in Y
point the same way in e;(T") as they do in T, so they do not form an oriented
cycle. If the chip does visit Y, let y € Y be the last vertex it visits. Then
either y = s, or the rotor at y points to a vertex not in Y; in either case,
the rotors at vertices in Y do not form an oriented cycle. O

We will need slightly more refined information about the intermediate
states that occur before the chip falls into the sink. These states may contain

oriented cycles, but only of a very restricted form. For a vertex z we write
Cycz(Q) for the set of rotor configurations U such that

(i) U contains an oriented cycle; and

(ii) If the rotor U(z) is deleted, the resulting subgraph contains no oriented
cycles.

Lemma 2.2. Starting from a rotor configuration Ty € Rec(G) with a chip
at xg, let Ty, and xp be the rotor configuration and chip location after k steps
of rotor-router walk. Then

(1) If Ty, ¢ Rec(G), then T} € Cycy, (G).
(ii) If T, € Rec(G), then xi & {zo,...,Tx_1}.

Proof. (i) It suffices to show that any oriented cycle in T} contains z.
Let Y be any set of vertices of G not containing zj. If Y is disjoint from
{zg,...,xp_1}, then the rotors at vertices in Y point the same way in T} as
they do in T, so they do not form an oriented cycle. Otherwise, let y € Y
be the vertex visited latest before time k. The rotor Ty (y) points to a vertex
not in Y, so the rotors at vertices in Y do not form an oriented cycle.

(ii) Suppose zy € {zo,...,zx—1}. Let yo = xg, and for ¢ = 0,1,...
let y;4+1 be the target of the rotor Tj(y;). Then the last exit from zj before
time k£ was to y;, and by induction if yi,...,y;—1 are different from xzy,
then y;_1 was visited before time k, and the last exit from y;_1 before time k
was to y;. It follows that y; = xi for some i > 1, and hence T} contains an
oriented cycle. O

Lemma 2.3. If T1,T5 € Rec(G) and ex(T1) = ex(Ts), then Ty = Ts.

Proof. We will show that any T' € Rec(G) can be recovered from e, (T') by
reversing one rotor step at a time. Given rotor configurations U,U’ and
vertices y,y’, we say that (U’,y’) is a predecessor of (U,y) if a chip at v/
with rotors configured according to U’ would move to y in a single step
with resulting rotors configured according to U. Given U and y, for each
neighbor z of y whose rotor U(z) points to y, there is a unique predecessor
of the form (U’, z), which we will denote P,(U,y).

Suppose (U, y) is an intermediate state in the evolution from T to e;(T).
If U ¢ Rec(G), then by case (i) of Lemma 2.2 there is a cycle of rotors
y—y — Yy — ... =y, — yin U. If 2 is a vertex different from y,, whose
rotor U(z) points to y, then z is not in this cycle, so the predecessor P, (U, y)
has a cycle disjoint from its chip location. Thus P, (U, y) does not belong to

Rec(G) or to Cyc,(G), so by Lemma 2.2 it cannot be an intermediate state
in the evolution from T to e;(7T"). The state immediately preceding (U,y)
in the evolution from T to e, (7") must therefore be P, (U, y).

Now suppose U € Rec(G). By case (ii) of Lemma 2.2, U is the rotor
configuration when y is first visited. If y = x, then U = T. Otherwise, let
r=1x9— 1 — ... — T = S be the path in U from x to the sink. Then the
last exit from z before visiting y was to x1. By induction, if x1,...,z;_1 are
different from y, then x;_; was visited before y and the last exit from x;_;
before visiting y was to x;. It follows that x; = y for some j > 1, and the
state immediately preceding (U, y) must be P, (U,y). O

Thus for any vertex x of G, the operation e, of adding a chip at x and
routing it to the sink acts invertibly on the set of states Rec(G) whose rotors
form oriented spanning trees rooted at the sink. It is for this reason that we
call these states recurrent. We define the rotor-router group RR(G) as the
subgroup of the permutation group of Rec(G) generated by {e, },-s. For any
two vertices x and y, the operators e, and e, commute; this commutativity
is proved in [4] for a broad class of models encompassing both the abelian
sandpile and the rotor-router. Hence the group RR(G) is abelian.

Lemma 2.4. RR(G) acts transitively on Rec(G).

Proof. Given T1,Ts € Rec(G), for each vertex x # s let u(x) be the number
of rotor turns needed to get from 7 (z) to Ta(z). Let v(z) be the number of
chips ending up at z if u(y) chips start at each vertex y, with rotors starting
in configuration 77, and each chip takes a single step. After each chip has
taken a single step, the rotors are in configuration 75, hence

Hez(w) T = Heg(‘r) Ts.

TF#S TF#S

Letting g = [, 7@ wo obtain Ty, = gT1. O

Given vertices x and y, write dg, for the number of edges in G from z
to y, and write
dy =Y day
Yy

for the outdegree of .

Theorem 2.5. Let G be a strongly connected finite directed graph without
loops, let RR(G) be its rotor-router group, and SP(G) its sandpile group.
Then RR(G) ~ SP(G).

Proof. Let V be the vertex set of G. The sandpile group of G [2, 3] is the
quotient
SP(G) =ZY [(s, As)zev

where s € V is the sink and

A, = Z dpyy — dyx.
yev

Define ¢ : ZV — RR(G) by

) (Z Wc) = [e

zeV zeV

Starting with d, chips at a vertex z and letting each chip take one rotor-
router step results in d,, chips at each vertex y, with the rotors unchanged,
hence

ed“”y .

dz _
6;:—)

yev
Thus ¢(A;) = Id. Since also ¢(s) = es = Id, the map ¢ descends to a map
¢ : SP(G) — RR(G). This latter map is surjective since ¢ is surjective; to
show that ¢ is injective, by Lemma 2.4 we have

#RR(G) = #Rec(G) = #5P(G),

where the equality on the right is the matrix-tree theorem [11, 5.6.8]. O

3 Aggregation on the Tree

Fix d > 3, and let T be the infinite d-regular tree. Fix an origin vertex oin T'.
In rotor-router aggregation, we grow a cluster of points in 7' by repeatedly
starting chips at the origin and letting them walk until they exit the cluster.
Beginning with A; = {0}, define the cluster A,, inductively by

Ay, = Ap—1 U {xn}, n > 1.

where x,, € T is the endpoint of a rotor-router walk started at o and stopped
on first exiting A,_1. We do not change the positions of the rotors when
adding a new chip. In this section we use the group isomorphism in The-
orem 2.5 to show that A, is a perfect ball for suitable values of n (Theo-
rem 3.4).

A function H on the vertices of a directed graph G is harmonic at a
vertex z if
de(m) = Z dzyH(y)a
yev
where d, is the number of edges from x to y, and d, is the outdegree of x.

Lemma 3.1. Let G = (V, E) be a finite directed graph without loops. Sup-
pose chips on G can be moved by a sequence of rotor-router steps, starting
with w(x) chips at each vertex x and ending with v(x) chips at each vertex
x, in such a way that the initial and final rotor configurations are the same.
If H is a function on V that is harmonic at all vertices which emitted chips,

then
> H(x)u(x) = H(z)v(x).
eV eV
Proof. Let w = ug,uy,...,ur = v be the intermediate configurations. If u;4;

is obtained from wu; by routing a chip from z; to y;, then

Y H(x)(u(z) —v(@) =Y H(x:) — H(ys). (1)
zeV 7

If the initial and final rotor configurations are the same, then each rotor
makes an integer number of full turns, so the sum in (1) can be written

D H(wi) = Hiy) =) N(@) Y duy(H(x) = H(y))

zeV yev

where N(z) € Z>g is the number of full turns performed by the rotor at z.
By the harmonicity of H, the inner sum on the right vanishes whenever
N(z) > 0. O

Next we describe our choice of graph G and harmonic function H. By
the d-regular tree of height n we will mean the finite rooted tree in which
each non-leaf vertex has d — 1 children, and the path from each leaf to the
root has n — 1 edges. We denote this tree by 7,,. Let T, be the graph
obtained from 7, by adding a single additional leaf o whose parent is the
root 7 of T;,. This is an undirected graph; when applying the results above,
which are phrased in terms of directed graphs for maximum generality, we
think of it as bidirected: each edge is replaced by a pair of directed edges
pointing in opposite directions.

Denote by (X¢):>0 the simple random walk on T, and let 7 > 0 be the
first hitting time of the set of leaves. Fix a leaf z # o, and let

H(z) = Po(Xr = 2) (2)

be the probability that random walk started at x and stopped at time 7
stops at z. This function is harmonic at all non-leaf vertices.

We briefly recall the well-known martingale argument from gambler’s
ruin used to find the value of H(r). The process

M; = o=l

is a martingale, where a = d — 1 and |z| denotes the number of edges in
the path from o to x. Since M; has bounded increments and E,7 < oo, we
obtain from optional stopping

=E.My=E,M,=p+(1—p)a™™

where p = P,.(X; = 0). Solving for p we obtain

P (X, =0)=——. (3)

In the event that the walk stops at a leaf z # o, by symmetry it is equally

likely to stop at any such leaf. Since there are a™~! such leaves, we obtain

from (3)

1-P(X;=0) a—1
an—1 Can -1

H(r) = (4)

The wired d-reqular tree of height n is the graph T,, obtained from T,
by collapsing all the leaves to a single vertex s, the sink. We do not collapse
edges; thus each neighbor of the sink except for » has a = d — 1 edges to
the sink. The proof of Theorem 3.4 will use the following fact about the
sandpile group of the wired regular tree.

(Tn)-

Proof. See [6], Proposition 4.2. O

The next lemma concerns rotor-router walk on 7}, stopped on hitting
the leaves. The leaves play the role of sinks, and the dynamics are the same
as for rotor-router walk on the wired tree T),. However, we are interested
in counting how many chips stop at each leaf, which is why we preserve
the distinction between T}, and T,,. Since the rotors at the leaves play no
role, we view our rotor configuration as living on T},. Such a configuration is
acyclic if no two neighboring vertices have rotors pointing to one another; in
the notation of the previous section, the acyclic configurations are precisely
those in Rec(T},).

Lemma 3.3. Let a = d — 1. Given an acyclic rotor configuration on T,
starting with =1 chips at the root r of T),, and stopping each chip when it

a—1
reaches a leaf, exactly one chip stops at each leaf z # o, and the remaining
n—1
a a_fl chips stop at o. Moreover, the starting and ending rotor configura-
tions are identical.

Proof. By Theorem 2.5 and Lemma 3.2, the element e, € RR(T},) has order

a::f, so €™ is the identity permutation of Rec(T},), hence the starting
and ending rotor configurations are identical. Fix a leaf z # o of T, and
let H be the function on vertices of T}, given by (2). Since H is harmonic on
the non-leaf vertices, by Lemma 3.1 and (4), the number of chips stopping

at z is

m =

a” —1
> H(z)v(x) =) H(z)u(x) ()
Since there are "~ ! leaves z # o, the remaining “::11 —a" !t = “na:ll_ L chips
stop at o.]

The principal branches of the infinite d-regular tree T" are the d subtrees
rooted at the neighbors of the origin. The ball of radius p centered at the
origin in o € T' is

By={zeT :|a| < p}
where |z| is the number of edges in the path from o to x. Write

af —1

b, =#B,=1 1 .
» = #B, +(a+)a_1

As the following result shows, provided we start with an acyclic configuration
of rotors, the rotor-router aggregation cluster A, is a perfect ball at those
times when an appropriate number of chips have aggregated. It follows that
at all other times, the cluster is as close as possible to a ball: if b, < n < b,41
then B, C A, C B,y1.

Theorem 3.4. Let A, be the region formed by rotor-router aggregation on
the infinite d-reqular tree, starting from n chips at the origin. If the initial
rotor configuration is acyclic, then Ay, = B, for all p > 0.

Proof. Define a modified aggregation process A/, as follows. Stop the n-th
chip when it either exits the occupied cluster A/, or returns to o, and let

Ay = A,y U}

where x/, is the point where the n-th chip stops. By relabeling the chips,
this yields a time change of the original process, i.e. A} = Ajf(n) for some

10

sequence f (1), f(2),.... Thus it suffices to show A’ = B, for some sequence
c1,C2,.... We will ShOW by induction on p that th1s is the case for

p

t=1

and that after ¢, chips have stopped, the rotors are in their initial state. For
the base case p = 1, we have ¢; = a + 2 = d + 1. The first chip stops at o,
and the next d stop at each of the neighbors of o, so A:i+1 = Bj. Since the
rotor at o has performed one full turn, it is back in its initial state.
Assume now that A'Cp_ . = B,—1 and that the rotors are in their initial
acyclic state. Starting with ¢, —c,_1 chips at o, let each chip in turn perform
rotor-router walk until either returning to o or exiting the ball B, 1. Then
each chip is confined to a single principal branch of the tree, and each branch
receives % chips. By Lemma 3.3, exactly one chip will stop at each leaf
z € B,— B,_1, and the remainder will stop at 0. Thus A’Cp = B,. Moreover,
by Lemma 3.3, once all chips have stopped, the rotors are once again in

their initial state, completing the inductive step.]

4 Recurrence and Transience

In this section we explore questions of recurrence and transience for the
rotor-router walk on regular trees. We aim to study to what extent the
rotor-router walk behaves as a deterministic analogue of random walk. We
find that the behavior depends quite dramatically on the initial configuration
of rotors.

A chip performing rotor-router walk starting at the origin o in the infi-
nite d-regular tree either returns to the origin or escapes to infinity within a
single principal branch of the tree, leaving the rotors in the other branches
unchanged. Therefore, as shown in Figure 1, we focus on a single branch Y,
of the ball B, in the d-regular tree. In the notation of the previous sec-
tion, Y, is the graph obtained from T, by collapsing all the leaves except
for o to a single vertex, which we label b for boundary. Starting chips at
the root r of Y,,, and stopping them when they reach either o or b, we will
compare the hitting rates of o and b for rotor-router walk with the expected
hitting rates for random walk.

To each rotor direction we associate an index from {1,...,d}, with direc-
tion d corresponding to a rotor pointing to the parent vertex. Rotors cycle
through the indices in order. In the ternary tree (d = 3) we will sometimes

11

Figure 1: The ball B, in the regular ternary tree (top), the branch Y,, (left),
and its sub-branches L and R.

refer to the three rotor directions as left (direction 1), right (direction 2)
and up (direction 3).

Lemma 4.1. Suppose d = 3. If all rotors in 'Y, initially point in direction 1,
then the first 2™ — 1 chips started at r alternate, the first stopping at b, the
next stopping at o, the next at b, and so on. After this sequence of 2™ — 1
walks, all rotors again point in direction 1.

Proof. Induct on n. In the base case n = 2, there is only one rotor, which
sends the first chip in direction 2 to b, the next chip up in direction 3 to o,
and the third chip in direction 1 to b, at which point the rotor is again in
its initial state.

Now suppose that the lemma holds for Y,,_;. Let L and R be the two
principal branches of Y;,. We think of L and R as each having a rotor that

12

Figure 2: The four-chip cycle, which begins after the first chip has been
routed to b.

points either to b or back up to r. The initial state of these rotors is pointing
to r. The first chip is sent from the root to R, which by induction sends
it to b. Note that the root rotor is now pointing towards R, the R-rotor is
pointing to b, and the L-rotor is pointing to r (Figure 2a). We now observe
that the next four chips form a pattern that will be repeated. The second
chip is sent directly to o (Figure 2b) and the third chip is sent to L which
sends it to b (Figure 2c). The fourth chip is sent to R, but by induction
this chip is returned and then it is sent to o (Figure 2d). Finally, the fifth
chip is sent to L, returned, sent to R, and through to b (Figure 2e). Note
that the root rotor is now again pointing towards R, the R-rotor is again
pointing to b, and the L-rotor is again pointing to r. In this cycle of four
chips, the two branches R and L see two chips apiece. This cycle repeats
27=2 _ 1 times, and each subtree sees 2"~ — 2 chips.

Recall that the first chip was sent to R, so R has seen a total of 2771 —1
chips. By induction, all the rotors in R are in their initial configuration. We
have sent a total of 2" — 3 chips. The next chip is sent to o, and the last
to L, which sends it to b. Now L has seen 2! — 1 chips, so by induction
all of its rotors are in their initial configuration. The root rotor is pointing
towards L, its initial configuration. We have sent a total of 2™ — 1 chips,

13

alternating between b and o, and all of the rotors of Y,, are in the initial
configuration, so the inductive step is complete. O

We remark that the obvious generalization of Lemma 4.1 to trees of
degree d > 3 fails; indeed, we do not know of a starting rotor configuration on
trees of higher degree which results in a single chip stopping at o alternating
with a string of d — 1 chips stopping at b.

Consider now the case of the infinite ternary tree T'. A chip performing
rotor-router walk started at the origin o € T" must either return to o or
escape to infinity visiting each vertex only finitely many times. Thus the
state of the rotors after a chip has escaped to infinity is well-defined. We can
therefore run a sequence of m rotor-router walks and count the number R(m)
that return to the origin. The following result shows that there is an initial
rotor configuration on the tree for which the rotor-router walk behaves as
an exact quasirandom analogue to the random walk, in which chips exactly
alternate returning to the origin with escaping to infinity.

Proposition 4.2. Let T be the infinite ternary tree, with principal branches
labeled YV, Y@ and YO in correspondence with the direction indexing of
the rotor at the origin. Set the rotors along the rightmost path to infinity
in YO initially pointing in direction 2, and all remaining rotors initially
pointing in direction 1. Let E(m) be the expected number of chips that
return to the origin if m chips perform independent random walks on T. Let
R(m) be the number of chips that return to the origin if m chips sequentially
perform rotor-router walks on T. Then |E(m) — R(m)| < & for all m.

Proof. Lemma 4.1 implies that for the branches Y® and Y@, the chips
sent to a given branch alternate indefinitely, with the first escaping to in-
finity, the next returning to o, and so on. Likewise, chips sent to YO will
alternate indefinitely, with the first returning to o, the next escaping to in-
finity, and so on. Since chips on the full tree T" are routed cyclically through
the branches beginning with Y, we see that the chips too will alternate
indefinitely between escaping to infinity and returning to the origin, with
the first escaping to infinity. Thus R(m) = |Z2|. Taking n — oo in (3) we
obtain E(m) = %, and the result follows. O
Lemma 4.3. For any d > 3, if all rotors in Y,, initially point in direction
d — 1, then the first n — 1 chips started at v all hit o before hitting b. After
these n — 1 chips have stopped at o, the final rotors all point in direction d.

Proof. Induct on n. In the base case n = 2, the first chip steps directly
from r to o, leaving the single rotor pointing in direction d. Now suppose

14

the lemma holds for Y,,_1. Let Z1,..., Z4_1 be the principal branches of Y.
The first chip placed at r is sent directly to o. By the inductive hypothesis,
the first n — 2 chips that are sent to each branch Z; are returned to r before
hitting b. Thus each of the next n — 2 chips started at r is sent to Zj,
returned to r, sent to Zs, and so on until it is sent to Z;_1, returned to r
and then routed to o. The root rotor now points in direction d, and since
each branch Z; received exactly n — 2 chips, its final rotors all point in
direction d by the inductive hypothesis. O

Our next result shows that, perhaps surprisingly, the initial rotors can
be set up so as to make rotor-router walk on the d-regular tree recurrent.

Proposition 4.4. On the infinite d-regular tree T', if all rotors initially
point in direction d — 1, then every chip in an infinite succession of chips
started at the origin eventually returns to the origin.

Proof. By Lemma 4.3, for each n, the n-th chip sent to each principal
branch Y returns to the origin before hitting height n + 1 of T'. O

Note also that if all the rotors in the first n — 1 levels of T initially point
in direction d—1, and all remaining rotors initially point in direction d, then
after n — 1 chips have been sent to a given branch Y and returned to the
origin, by Lemma 4.3 all rotors in Y point in direction d, so the next chip
sent to Y escapes to infinity.

We continue our exploration of recurrence and transience on the infinite
ternary tree T, allowing now for arbitrary rotor configurations. We focus
on a single principal branch Y of the infinite tree, rooted at a neighbor r of
the origin o € T. We include the edge (o,7) in Y, so that r has degree d
in Y, and o has degree one. Thus each chip started at the origin will move
to r on its first step. Given a rotor configuration on Y, we define the escape
sequence for the first n chips to be the binary word a = a; ... a,, where for
each 7,

_J0, if the 4% chip returns to the origin;
! 1, if the j** chip escapes to infinity.

As noted previously, a chip that does not return to the origin visits each
vertex of T" only finitely many times, so a is well-defined.

We define a map 9 associating to an escape sequence a = @ . .. a, a pair
of shorter sequences. First, we rewrite a as the concatenation of subwords
by - - by, where each b; € {0,10,110}. Since at least one of any three consec-
utive chips entering Y is routed back to the origin by the rotor at the root r

15

of Y, at most two of any three consecutive letters in an escape sequence a
can be ones. Therefore, any escape sequence can be factored in this way up
to the possible concatenation of an extra 0. Now we define ¢ (a) = (¢, d) by

), ifb; =0
), ifb; =110)
), ifb; =10 and #{i < j|b; = 10} is odd

)

, ifbj = 10 and #{i < j|b; = 10} is even.

In the other direction, given a pair of binary words ¢ and d, each of
length m, define ¢(c,d) = by - - - by, where

O, if (Cj, d]) = (0,0)
bj = 10, if (Cj,dj) = (1,0) or (O, 1)
110, if (¢j,d;) = (1,1).

Note that ¢ is a left inverse of 1, i.e. ¢ o ¢)(a) = a, up to possible concate-
nation of an extra 0.

Lemma 4.5. Let Y be a principal branch of the infinite ternary tree. Fix a
rotor configuration on 'Y with the root rotor pointing to o. Let c and d be the
escape sequences for the configurations on the left and right sub-branches of
Y, respectively. Then ¢(c,d) is the escape sequence for the full branch Y.

Proof. We claim that each word b; is the escape sequence for the gt full
rotation of the root rotor. Note that after the root rotor has performed j—1
full rotations, each of the sub-branches L and R of Y has seen exactly j — 1
chips, so the next chip sent to L (resp. R) will either return to r or escape
to infinity accordingly as ¢; =0 or ¢; =1 (resp. dj =0 or d; = 1).
Consider first the case (cj,d;) = (0,0). After j — 1 full rotations of
the root rotor, the next chip that enters Y will be routed first to L, then
returned to r, sent to R, returned to r, and finally routed back up to the
origin. The root rotor has now performed a full turn, with corresponding
escape sequence b; = 0. If (¢;,d;) = (1,0), the next chip entering Y will be
routed to L, where it escapes to infinity. The following chip will be routed
to R and then back up to the origin, completing a full rotation of the root
rotor. In this case we have escape sequence b; = 10. If (¢;,d;) = (0,1),
the next chip entering Y will be routed to L, back up to r, and then to
R where it escapes to infinity. The following chip will be routed directly
up to the origin leaving the root rotor pointing up once again. Again, in

16

this case b; = 10. Finally, if (¢j,d;) = (1,1), the next two chips entering Y’
will escape to infinity, the first through L and the second through R. The
following chip will be routed directly up to the origin, once again leaving
the root rotor pointing up. In this case we have b; = 110. 0

To adapt Lemma 4.5 to the case when the root rotor is not pointing
up, we define extended escape sequences ¢’ and d' associated to the two sub-
branches. If the root rotor initially points to L, let ¢ = Oc and d’ = d. If the
root rotor initially points to R, let ¢ = 0c and d’ = 0d. Then a = ¢(c/,d)
is the escape sequence of the full branch Y.

We now introduce the condition that is central to characterizing which
words can be escape sequences:

any subword of length 2¥ — 1 contains at most 2871 ones (Py)

We next show that the map 1 preserves this requirement.

Lemma 4.6. Let a be a binary word satisfying (Py) and let (a) = (c,d)
as defined in (5). Then ¢ and d each satisfy (Pi—1).

Proof. Let ¢ be a subword of ¢ of length 251 — 1 and let d’ be the corre-
sponding subword of d. Let o' = ¢(c¢,d’), which is a subword of a0. The
formula for ¢ guarantees that a’ has one zero for each letter of ¢/, so a’ has
exactly 2"~! — 1 zeros. Since the last letter of a’ is zero, and a satisfies (Py),
it follows that a’ has at most 2¥~1 ones (else after truncating the final zero,
the suffix of @’ of length 2¥ — 1 has at most 2¥~1 — 2 zeros, hence at least
2F=1 1 1 ones).

Let m be the number of ones in ¢. Since the instances of (0,1) and (1, 0)
alternate in the formula for ¥ (a) = (¢,d), it follows that d’ must have at
least m — 1 ones. Since the number of ones in ¢’ and d’ combined equals the
number of ones in a’, we obtain 2m — 1 < 2’“*1, hence m < 25=2. The same
argument with the roles of ¢ and d reversed shows that d has at most 252
ones. O

Lemma 4.7. Let a = a1 ...a, be a binary word of length n. Then a is an
escape sequence for some rotor configuration on the infinite branch Y if and
only if a satisfies (Py) for all k.

Proof. Suppose a is an escape sequence. We prove that a satisfies (Py) for
each k by induction on k. That a satisfies (P;) is trivial. Now suppose that
every escape sequence satisfies (Py_1), and let ¢ and d be the extended escape
sequences of the left and right sub-branches respectively. Then a = ¢(c, d)

17

up to the possible concatenation of an extra zero. Let a’ be a subword of a
of length 2F —1, and let ¥)(a’) = (¢/,d’). Then there are words ¢’ and d” each
of which is a subword of ¢ or d, and which are equal to ¢’ and d’, respectively,
except possibly in the first letter; moreover the first letters satisfy ¢f < ¢f
and d} < df.

By the formula for v, the number of ones in a’ is the sum of the number
of ones in ¢ and d’. If ¢ has length at most 2~ — 1, then since ¢ and d
satisfy (Py_1), each of ¢ and d’ has at most 22 ones, and therefore a’ has
at most 2¥71 ones. On the other hand, if ¢ has length at least 2*~1, then
the number of zeros in o is at least 281 —1. Thus & has at most 2°~1 ones,
so a satisfies (Py).

The proof of the converse is by induction on n. For n = 1 the statement
is trivial. Suppose that every binary word of length n — 1 satisfying (Py) for
each k is an escape sequence. Then by Lemma 4.6, ©)(a) = (¢, d) gives a pair
of binary words each satisfying (Py) for all k. If ¢ and d have length n — 1
or less, then they are escape sequences by induction, hence a is an escape
sequence by Lemma 4.5. If ¢ and d are of length n, then the definition of 1
implies that a; = 0 for all j < n, in which case a is an escape sequence by
the remark following Proposition 4.4. O

We can now establish our main result characterizing all possible escape
sequences on the infinite ternary tree.

Theorem 4.8. Let a = ay...a, be a binary word. For j € {1,2,3} write
ald) = ;0130546 -... Then a is an escape sequence for some rotor config-
uration on the infinite ternary tree T if and only if each a¥) satisfies (Py)
for all k.

Proof. Let YV, Y@ and Y®) be the three principal branches of T assigned
so that the rotor at the origin initially points to Y3). Then a is the escape
sequence for T'if and only if al) = ajaj+3aj46 - .- is the escape sequence for
Y (). The result now follows from Lemma 4.7. O

5 Concluding Remark

We conclude with an open question. While Theorem 4.8 completely char-
acterizes the possible escape sequences for rotor-router walk on the infi-
nite ternary tree, we know nothing about the possible escape sequences for
rotor-router walk on another natural class of transient graphs, namely Z?
for d > 3. The open question is this: does there exist a rotor configuration
on Z¢ for d > 3, analogous to the configuration on the tree described in

18

Proposition 4.4, so that every chip in an infinite sequence of chips started
at the origin eventually returns to the origin? We remark that Jim Propp
has found such a configuration on Z2.

Acknowledgments

The authors thank Yuval Peres, Jim Propp and Parran Vanniasegaram for
useful discussions.

References

1]

[11]

J. N. Cooper and J. Spencer, Simulating a random walk with constant
error, Combin. Probab. Comput. 15 (2006) 815-822.
http://www.arxiv.org/abs/math.C0/0402323.

R. Cori and D. Rossin, On the sandpile group of a graph, Furopean J.
Combin. 21 (2000), no. 4, 447-459.

D. Dhar, Self-organized critical state of sandpile automaton models,
Phys. Rev. Lett. 64 (1990), 1613-1616.

P. Diaconis and W. Fulton, A growth model, a game, an algebra, La-
grange inversion, and characteristic classes, Rend. Sem. Mat. Univ. Pol.
Torino 49 (1991) no. 1, 95-119.

M. Kleber, Goldbug variations, Math. Intelligencer 27 (2005), no. 1,
55-63.

L. Levine, The sandpile group of a tree, Furopean J. Combin., to ap-
pear. http://arxiv.org/abs/math/0703868

L. Levine and Y. Peres, Spherical asymptotics for the rotor-router
model in Z¢, Indiana Univ. Math. J. 57 (2008), no. 1, 431-450.
http://arxiv.org/abs/math/0503251

L. Levine and Y. Peres, Strong spherical asymptotics for rotor-router
aggregation and the divisible sandpile, Potential Analysis, to appear.
http://arxiv.org/abs/0704.0688

A. M. Povolotsky, V. B. Priezzhev, R. R. Shcherbakov, Dynamics of
Eulerian walkers, Phys. Rev. E 58 (1998), 5449-54.

V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, Eulerian
walkers as a model of self-organised criticality, Phys. Rev. Lett. 77
(1996) 5079-82

R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univer-
sity Press, 1999.

19

