
The approach to criticality in sandpiles

Anne Fey,1 Lionel Levine,2, ∗ and David B. Wilson3

1Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3Microsoft Research, Redmond, WA 98052, USA

A popular theory of self-organized criticality predicts that the stationary density of the abelian
sandpile model equals the threshold density of the corresponding fixed-energy sandpile. We recently
announced that this “density conjecture” is false when the underlying graph is any of Z

2, the
complete graph Kn, the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. In
this paper, we substantiate this claim by rigorous proof and extensive simulations. We show that
driven dissipative sandpiles continue to evolve even after a constant fraction of the sand has been
lost at the sink. Nevertheless, we do find (and prove) a relationship between the two models: the
threshold density of the fixed-energy sandpile is the point at which the driven dissipative sandpile
begins to lose a macroscopic amount of sand to the sink.

PACS numbers: 64.60.av, 45.70.Cc

I. INTRODUCTION

In this paper we expand on our results announced in [1] critiquing the theory of self-organized criticality developed
by Dickman, Muñoz, Vespignani and Zapperi (DMVZ) in a series of widely cited papers [2–6]. The DMVZ theory
predicts a certain relationship between systems that are driven from the outside and closed systems with an absorbing
state. We refute this prediction for the abelian sandpile model of Bak, Tang and Wiesenfeld [7] and its fixed-energy
counterpart. In particular, we focus on the prediction that the stationary density ζs of the driven dissipative sandpile
model equals the threshold density ζc of the fixed-energy sandpile model (FES).

For several families of graphs, we have found precise values for both these densities, which are clearly not equal.
We presented these values [1]; for completeness, we reproduce the table here (Table I). In this paper we present our
evidence for these values, which consists either of rigorous proof or extensive simulations. Our rigorous results (see
Theorems 4 and 14) point to a somewhat different relationship than that posited in the DMVZ series of papers: the
driven system exhibits a second-order phase transition at the threshold density of the closed system.

One hope of the DMVZ paradigm was that critical features of the driven dissipative model, such as the exponents
governing the distribution of avalanche sizes and decay of correlations, might be more easily studied in FES by
examining the scaling behavior of these observables as ζ ↑ ζc. However, several findings including ours suggest that
these two models may not share the same critical features. Among these we note the discrepancies reported by
Grassberger and Manna [8]; the discovery by De Menech, Stella and Tebaldi that many observables of the driven
dissipative model do not show simple power-law scaling [9]; the finding of Bagnoli et al. [10] of non-ergodicity in the
FES; and the work of Peters and Pruessner [11, 12], who numerically find different critical properties for driven and
fixed-energy versions of the Ising model and the Oslo model. Our main findings — the inequality of ζs and ζc, and
the continued change in density of driven dissipative sandpiles beyond ζc — constitute further evidence that driven
dissipative and fixed-energy sandpile models may not share the same critical features.

This paper is organized as follows: In Section II we define the two sandpile models, with the square grid graph Z
2

as example. We present simulation results supplementing those in [1]. In the remaining sections, we discuss the other
graph families. In Sections III (bracelet graph), IV (complete graph) and V (flower graph), we give rigorous proofs for
the exact values of the two densities. Moreover, in Section III we give the proof of Theorem 1 of [1], and in Section V
of a similar theorem, both illustrated graphically in Figure 2 of [1]. In Sections VI (regular trees) and VII (ladder
graph), we find the threshold densities by simulation. For the exact values of the stationary densities, we refer to the
work of Jeng, Piroux, and Ruelle [13], Dhar and Majumdar [14], and Járai and Lyons [15].
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graph ζs ζc

Z 1 1

Z
2 17/8 = 2.125 2.125288 . . .

bracelet 5/2 = 2.5 2.496608 . . .

flower graph 5/3 = 1.666667 . . . 1.668898 . . .

ladder graph 7

4
−

√
3

12
= 1.605662 . . . 1.6082 . . .

complete graph n/2 + O(
√

n) n − O(
√

n log n)

3-regular tree 3/2 1.50000. . .

4-regular tree 2 2.00041. . .

5-regular tree 5/2 2.51167 . . .

TABLE I: Stationary and threshold densities for different graphs. Exact values are in bold.

II. SANDPILES ON THE SQUARE GRID Z
2

In this section we give precise definitions of the stationary and threshold densities, and present the results of large-
scale simulations on Z

2. The definitions in this section apply to general graphs, but we defer the discussion of results
about other graphs to subsequent sections.

A. The driven dissipative sandpile and the stationary density ζs

Let Ĝ = (V, E) be a finite graph, which may have loops and multiple edges. Let S ⊂ V be a nonempty set of
vertices, which we will call sinks. The presence of sinks distinguishes the driven dissipative sandpile from its fixed-
energy counterpart. To highlight this distinction, throughout the paper, graphs denoted with a “hat” as in Ĝ have
sinks, and those without a hat as in G do not.

For vertices v, w ∈ V , write av,w = aw,v for the number of edges connecting v and w, and

dv =
∑

w∈V

av,w.

for the number of edges incident to v. A sandpile (or “configuration”) η on Ĝ is a map

η : V → Z≥0.

We interpret η(v) as the number of sand particles at the vertex v; we will sometimes call this number the height of v
in η.

A vertex v /∈ S is called unstable if η(v) ≥ dv. An unstable vertex can topple by sending one particle along each
edge incident to v. Thus, toppling v results in a new sandpile η′ given by

η′ = η + ∆v

where

∆v(w) =

{

av,w, v 6= w

av,v − dv, v = w.

Sinks by definition are always stable, and never topple. If all vertices are stable, we say that η is stable.
Note that toppling a vertex may cause some of its neighbors to become unstable. The stabilization η◦ of η is a

sandpile resulting from toppling unstable vertices in sequence, until all vertices are stable. By the abelian property [16],
the stabilization is unique: it does not depend on the toppling sequence. Moreover, the number of times a given vertex
topples does not depend on the toppling sequence.

The most commonly studied example is the n × n square grid graph, with the boundary sites serving as sinks
(Figure 1).

The driven dissipative sandpile model is a continuous time Markov chain (ηt)t≥0 whose state space is the set of

stable sandpiles on Ĝ. Let V ′ = V \ S be the set of vertices that are not sinks. At each site v ∈ V ′, particles are
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FIG. 1: The square grid Z
2.

added at rate 1. When a particle is added, topplings occur instantaneously to stabilize the sandpile. Writing σt(v)
for the total number of particles added at v before time t, we have by the abelian property

ηt = (σt)
◦.

Note that for fixed t, the random variables σt(v) for v ∈ V ′ are independent and have the Poisson distribution with
mean t.

The model just described is most commonly known as the abelian sandpile model (ASM), but we prefer the term
“driven dissipative” to distinguish it from the fixed-energy sandpile described below, which is also a form of ASM.
“Driven” refers to the addition of particles, and “dissipative” to the loss of particles absorbed by the sinks.

Dhar [16] developed the burning algorithm to characterize the recurrent sandpile states, that is, those sandpiles η
for which, regardless of the initial state,

Pr(ηt = η for some t) = 1.

Lemma 1 (Burning Algorithm [16]). A sandpile η is recurrent if and only if every non-sink vertex topples exactly
once during the stabilization of η +

∑

s∈S ∆s, where the sum is over sink vertices S.

The recurrent states form an abelian group under the operation of addition followed by stabilization. In particular,
the stationary distribution of the Markov chain ηt is uniform on the set of recurrent states.

The combination of driving and dissipation organizes the system into a critical state. To measure the density of
particles in this state, we define the stationary density ζs(Ĝ) as

ζs(Ĝ) = Eµ

[

1

#V ′

∑

v∈V ′

η(v)

]

where V ′ = V \ S, and µ is the uniform measure on recurrent sandpiles on Ĝ. The stationary density has another

expression in terms of the Tutte polynomial of the graph obtained from Ĝ by collapsing the set S of sinks to a single
vertex; see section IV.

Most of the graphs we will study arise naturally as finite subsets of infinite graphs. Let Γ be a countably infinite
graph in which every vertex has finite degree. Let Ĝn for n ≥ 1 be a nested family of finite induced subgraphs with
⋃

Ĝn = Γ. As sinks in Ĝn we take the set of boundary vertices

Sn = Ĝn − Ĝn−1.

In cases where the free and wired limits are different, such as on regular trees, we will choose a sequence Ĝn corre-
sponding to the wired limit. We denote by µn the uniform measure on recurrent configurations on Ĝn.

We are interested in the stationary density

ζs(Γ) := lim
n→∞

ζs(Ĝn).
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When Γ = Z
d, it is known that the infinite-volume limit of measures µ = limn→∞ µn exists and is translation-invariant

[17]. In this case it follows that the limit defining ζs(Γ) exists and equals

ζs = Eµ[η(0)]

where 0 ∈ Z
d is the origin. For other families of graphs we consider, we will show that the limit defining ζs(Γ) exists.

Much is known about the limiting measure µ in the case Γ = Z
2. The following expressions have been obtained

for ζs and the single site height probabilities. The symbol
?
= denotes expressions that are rigorous up to a conjecture

[13] that a certain integral, numerically evaluated as 0.5 ± 10−12, is exactly 1/2.

ζs(Z
2)

?
= 17/8 [13],

µ{η(x) = 0} = 2
π2 − 4

π3 [18],

µ{η(x) = 1} ?
= 1

4 − 1
2π − 2

π2 + 12
π3 [13, 19],

µ{η(x) = 2} ?
= 3

8 + 1
π − 12

π3 [13], and

µ{η(x) = 3} ?
= 3

8 − 1
2π + 1

π2 + 4
π3 [13].

The equality ζs(Z
2)

?
= 17/8 was first conjectured by Grassberger.

B. The fixed-energy sandpile model and the threshold density ζc

Next we describe the fixed-energy sandpile model, in which the driving and dissipation are absent, and the total
number of particles is conserved. In the mathematical and computer science literature, this model goes by the name
parallel chip-firing [20–22]. As before, let G be a finite graph, possibly with loops and multiple edges. Unlike the
driven dissipative model, we do not single out any vertices as sinks. The fixed-energy sandpile evolves in discrete
time: at each time step, all unstable vertices topple once in parallel. Thus the configuration ηj+1 at time j + 1 is
given by

ηj+1 = ηj +
∑

v∈Uj

∆v

where

Uj = {v ∈ V : ηj(v) ≥ dv}

is the set of vertices that are unstable at time j. We say that η0 stabilizes if toppling eventually stops, i.e. Uj = ∅

for all sufficiently large j.
If η0 stabilizes, then there is some site that never topples [23] (see also [24, Theorem 2.8, item 4] and [25, Lemma

2.2] for the case when G is infinite). Otherwise, for each site x, let j(x) be the last time x topples. Choose a
site x minimizing j(x). Then each neighbor y of x has j(y) ≥ j(x), so y topples at least once at or after time j(x).
Thus x receives at least dx additional particles and must topple again after time j(x), a contradiction. Note that this
argument uses in a crucial way the deterministic nature of the toppling rule. It gives a criterion that is very useful in
simulations: as soon as every site has toppled at least once, we know that the system will not stabilize.

Let (σλ(v))λ≥0 be a collection of independent Poisson point processes of intensity 1, indexed by the vertices of G.
So each σλ(v) has the Poisson distribution with mean λ. We define the threshold density of G as

ζc(G) = EΛc,

where

Λc = sup{λ : σλ stabilizes}.

We expect that Λc is tightly concentrated around its mean when G is large. Indeed, if Γ is an infinite vertex-transitive
graph, then the event that σλ stabilizes on Γ is translation-invariant. By the ergodicity of the Poisson product
measure, this event has probability 0 or 1. Since this probability is monotone in λ, there is a (deterministic) threshold
density ζc(Γ), such that

Pr[σλ stabilizes on Γ] =

{

1, λ < ζc(Γ)

0, λ > ζc(Γ).
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grid size
#samples ζc(Z

2

n)
distribution of height h of sand #topplings

(n2) Pr[h = 0] Pr[h = 1] Pr[h = 2] Pr[h = 3] ÷n3

642 268435456 2.124956 0.073555 0.173966 0.306447 0.446032 0.197110

1282 67108864 2.125185 0.073505 0.173866 0.306567 0.446062 0.197808

2562 16777216 2.125257 0.073488 0.173835 0.306609 0.446068 0.198789

5122 4194304 2.125279 0.073481 0.173826 0.306626 0.446067 0.200162

10242 1048576 2.125285 0.073479 0.173822 0.306633 0.446066 0.201745

20482 262144 2.125288 0.073478 0.173821 0.306635 0.446065 0.203378

40962 65536 2.125288 0.073477 0.173821 0.306637 0.446064 0.205323

81922 16384 2.125288 0.073477 0.173821 0.306638 0.446064 0.206475

163842 4096 2.125288 0.073478 0.173821 0.306638 0.446064 0.208079

Z
2 (stationary) 2.125000 0.073636 0.173900 0.306291 0.446172

TABLE II: Fixed-energy sandpile simulations on n×n tori Z
2

n. The third column gives our empirical estimate of the threshold
density ζc(Z

2

n). The next four columns give the empirical distribution of the height of a fixed vertex in the stabilization (σλ)◦,
for λ just below Λc. Each estimate of the expectation ζc(Z

2

n) and of the marginals Pr[h = i] has standard deviation less than
4 · 10−7. The total number of topplings needed to stabilize σλ appears to scale as n3.

We expect the threshold densities on natural families of finite graphs to satisfy a law of large numbers such as the
following.

Conjecture 2. With probability 1,

Λc(Z
2
n) → ζc(Z

2) as n → ∞.

DMVZ believed that the combination of driving and dissipation in the classical abelian sandpile model should push
it toward the critical density ζc of the fixed-energy sandpile. This leads to a specific testable prediction, which we call
the Density Conjecture.

Conjecture 3 (Density Conjecture). ζc = ζs.

In the case of the square grid, the conjecture ζc = 17/8 can be found in [5]. Likewise, in [6], it is asserted that
“FES are found to be critical only for a particular value ζ = ζc (which as we will show turns out to be identical to
the stationary energy density of its driven dissipative counterpart).”

Previous simulations (n = 160 [2]; n = 1280 [3]) to estimate the threshold density ζc(Z
2) found a value of 2.125, in

agreement with the stationary density ζs(Z
2)

?
= 17/8. By performing larger-scale simulations, however, we find that

ζc exceeds ζs.
Table II summarizes the results of our simulations refuting the density conjecture on Z

2. We find that ζc(Z
2)

equals 2.125288 to six decimal places, whereas ζs(Z
2) is known to be 2.125000000000 to twelve decimal places. In

each random trial, we add particles one at a time at uniformly random sites of the n × n torus. After each addition,
we perform topplings until either all sites are stable, or every site has toppled at least once since the last addition.
In the latter case, the sandpile does not stabilize. We record m/n2 as an empirical estimate of the threshold density,
where m is the maximum number of particles for which the configuration stabilizes. We then average these empirical
estimates over many independent trials. The one-site marginals we report are obtained from the stable configuration
just before the (m + 1)st particle was added, and the number of topplings reported is the total number of topplings
required to stabilize the first m particles.

We used a random number generator based on the Advanced Encryption Standard (AES-256), which has been
found to exhibit good statistical properties. Our simulations were conducted on a High Performance Computing
(HPC) cluster of computers.

III. SANDPILES ON THE BRACELET

Next we examine a family of graphs for which we can determine ζc and ζs exactly and prove that they are not
equal. Despite this inequality, we show that an interesting connection remains between the driven dissipative and
conservative dynamics: the threshold density of the conservative model is the point at which the driven dissipative
model begins to lose a macroscopic amount of sand to the sink.
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The bracelet graph Bn (Figure 2) is a multigraph with vertex set Zn (the n-cycle) with the usual edge set {(i, i +

1 mod n) : 0 ≤ i < n} doubled. Thus all vertices have degree 4. The graph B̂n is the same, except that vertex 0 is
distinguished as a sink from which particles disappear from the system. We denote by B∞ the infinite path Z with
doubled edges.

For λ > 0, let σλ be the configuration with Poisson(λ) particles independently on each site of B̂n. Let ηλ = (σλ)◦

be the stabilization of σλ, and let

ρn(λ) =
1

n − 1

n−1∑

x=1

ηλ(x)

be the final density. The following theorem gives the threshold and stationary densities of the infinite bracelet
graph B∞, and identifies the n → ∞ limit of the final density ρn(λ) as a function of the initial density λ.

Theorem 4. For the bracelet graph,

1. The threshold density ζc(B∞) is the unique positive root of ζ = 5
2 − 1

2e−2ζ (numerically, ζc = 2.496608).

2. The stationary density ζs(B∞) is 5/2.

3. ρn(λ) → ρ(λ) in probability as n → ∞, where

ρ(λ) = min

(

λ,
5 − e−2λ

2

)

=

{

λ, λ ≤ ζc

5−e−2λ

2 , λ > ζc.

Part 3 of this theorem shows that the final density undergoes a second-order phase transition at ζc: the derivative of
ρ(λ) is discontinuous at λ = ζc (Figure 3). Thus in spite of the fact that ζs 6= ζc, there remains a connection between
the conservative dynamics used to define ζc and the driven-dissipative dynamics used to define ζs. For λ < ζc, very
little dissipation takes place, so the final density equals the initial density λ; for λ > ζc a substantial amount of
dissipation takes place, many particles are lost to the sink, and the final density is strictly less than the initial density.
The sandpile continues to evolve as λ increases beyond ζc; in particular its density keeps changing.

We believe that this phenomenon is widespread. As evidence, in section V we introduce the “flower graph,” which
looks very different from the bracelet, and prove (in Theorem 14) that a similar phase transition takes place there.

For the proof of Theorem 4, we compare the dynamics of pairs of particles on the bracelet graph to single particles
on Z. At each vertex x of the bracelet, we group the particles starting at x into pairs, with one “passive” particle
left over if σλ(x) is odd. Since all edges in the bracelet are doubled, we can ensure that in each toppling the two
particles comprising a pair always move to the same neighbor, and that the passive particles never move. The toppling
dynamics of the pairs are equivalent to the usual abelian sandpile dynamics on Z.

We recall the relevant facts about one-dimensional sandpile dynamics:

• In any recurrent configuration on a finite interval of Z, every site has height 1, except for at most one site of
height 0. Therefore, ζs = 1 [26].

• On Z, an initial configuration distributed according to a nontrivial product measure with mean λ stabilizes
almost surely (every site topples only finitely many times) if λ < 1, while it almost surely does not stabilize
(every site topples infinitely often) if λ ≥ 1 [24]. Thus, ζc = 1.

FIG. 2: The bracelet graph B20.
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FIG. 3: Density ρ(λ) of the final stable configuration as a function of initial density λ, for the driven sandpile on the bracelet

graph B̂n as n → ∞. A second-order phase transition occurs at λ = ζc. Beyond this transition, the density of the driven
sandpile continues to increase, approaching the stationary density ζs from below.

Proof of Theorem 4 parts 1 and 2. Given λ > 0, let λ∗ be the pair density Ebσλ(x)/2c, and let

podd(λ) = e−λ
∑

m≥0

λ2m+1

(2m + 1)!
=

1

2
(1 − e−2λ).

be the probability that a Poisson(λ) random variable is odd. Then λ and λ∗ are related by

λ = 2λ∗ + podd(λ). (1)

The configuration σλ stabilizes on B∞ if and only if the pair configuration σ∗
λ stabilizes on Z. Thus ζc(B∞)∗ = ζc(Z).

Setting λ = ζc(B∞) in (1), using the fact that ζc(Z) = 1, and that λ∗ is an increasing function of λ > 0, we conclude
that ζc(B∞) is the unique positive root of

ζ = 2 + podd(ζ),

or ζ = 5
2 − 1

2e−2ζ . This proves part 1.

For part 2, by the burning algorithm, a configuration σ on B̂n is recurrent if and only if it has at most one site
with fewer than two particles. Thus, in the uniform measure on recurrent configurations on B̂n,

Pr(σ(x) = 2) = Pr(σ(x) = 3) =
1

2
− 1

2n
, Pr(σ(x) = 0) = Pr(σ(x) = 1) =

1

2n
.

We conclude that ζs(B̂n) = Eσ(x) = 5
2 − 2

n → 5
2 as n → ∞.

To prove part 3 of Theorem 4, we use the following lemma, whose proof is deferred to the end of this section. Let
Ẑn be the n-cycle with vertex 0 distinguished as a sink. Let σ′

λ be a sandpile on Ẑn distributed according to a product

measure (not necessarily Poisson) of mean λ. Let η′
λ be the stabilization of σ′

λ, and let ρ′n(λ) = 1
n−1

∑n−1
x=1 η′

λ(x) be
the final density after stabilization.

Lemma 5. On Ẑn, we have ρ′n(λ) → min(λ, 1) in probability.

Proof of Theorem 4, part 3. Let ηλ be the stabilization of σλ on B̂n, and let η∗
λ be the stabilization of σ∗

λ = bσλ/2c
on Ẑn. Then

ηλ(x) = 2η∗
λ(x) + ωλ(x) (2)
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where ωλ(x) = σλ(x) − 2σ∗
λ(x) is 1 or 0 accordingly as σλ(x) is odd or even. Let

ρ∗n(λ) =
1

n − 1

n−1∑

x=1

η∗
λ(x)

be the final density after stabilization of σ∗
λ on Ẑn. Then

ρn(λ) = 2ρ∗n(λ) +
1

n − 1

n−1∑

x=1

ωλ(x).

By the weak law of large numbers, 1
n−1

∑n−1
x=1 ωλ(x) → podd(λ) in probability as n → ∞. If λ < ζc, then λ∗ < 1, so

by Lemma 5, ρ∗n(λ) → λ∗ in probability, and hence

ρn(λ) → 2λ∗ + podd(λ) = λ

in probability. If λ ≥ ζc, then λ∗ ≥ 1, so by Lemma 5, ρ∗n(λ) → 1 in probability, hence

ρn(λ) → 2 + podd(λ) =
5 − e−2λ

2

in probability. This proves part 3.

Proof of Lemma 5. We may view Ẑn as the path in Z from an = −bn/2c to bn = dn/2e, with both endpoints serving

as sinks. For x ∈ Ẑn, let un(x) be the number of times that x topples during stabilization of the configuration σ′
λ

on Ẑn. Let u∞(x) be the number of times x topples during stabilization of σ′
λ on Z. The procedure of “toppling in

nested volumes” [24] shows that un(x) ↑ u∞(x) as n → ∞.
We consider first λ < 1. In this case u∞(x) is finite almost surely (a.s.). The total number of particles lost to the

sinks on Ẑn is un(an + 1) + un(bn − 1), so the final density is given by

ρ′n(λ) =
1

n − 1

[
bn−1∑

x=an+1

σλ(x) − un(an + 1) − un(bn − 1)

]

.

By the law of large numbers, 1
n−1

∑
σλ(x) → λ in probability as n → ∞. Since u∞(x) is a.s. finite, we have

un(an+1)+un(bn−1)
n−1 → 0 in probability, so ρ′n(λ) → λ in probability.

Next we consider λ ≥ 1. In this case we have un(x) ↑ u∞(x) = ∞, a.s. Let p(n, x) = Pr(un(x) = 0) be the

probability that x ∈ Ẑn does not topple. By the abelian property, adding sinks can not increase the number of
topplings, so

p(n, x) ≤ p(m, 0)

where m = min(x − an, bn − x). Let

Yn =

bn−1∑

x=an+1

1{un(x)=0}

be the number of sites in Ẑn that do not topple. Since un(0) ↑ ∞ a.s., we have p(n, 0) ↓ 0, hence

E
Yn

n
=

1

n

bn−1∑

x=an+1

p(n, x) ≤ 2

n

n/2
∑

m=1

p(m, 0) → 0

as n → ∞. Since Yn ≥ 0 it follows that Yn/n → 0 in probability.
In an interval where every site toppled, there can be at most one empty site. We have Yn + 1 such intervals.

Therefore, the number of empty sites is at most 2Yn + 1. Hence

n − 2Yn − 2

n − 1
≤ ρ′n(λ) ≤ 1.

The left side tends to 1 in probability, which completes the proof.
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IV. SANDPILES ON THE COMPLETE GRAPH

Let Kn be the complete graph on n vertices: every pair of distinct vertices is connected by an edge. In K̂n, one
vertex is distinguished as the sink. The maximal stable configuration on K̂n has density n − 2, while the minimal
recurrent configurations have exactly one vertex of each height 0, 1, . . . , n−2, hence density n−2

2 . The following result
shows that the stationary and threshold densities are quite far apart: ζs is close to the minimal recurrent density,
while ζc is close to the maximal stable density.

Theorem 6.

ζs(K̂n) =
n

2
+ O(

√
n)

ζc(Kn) ≥ n − O(
√

n logn).

The proof uses an expression for the stationary density ζs in terms of the Tutte polynomial, due to C. Merino
López [27]. Our application will be to the complete graph, but we state Merino López’ theorem in full generality. Let

G = (V, E) be a connected undirected graph with n vertices and m edges. Let v be any vertex of G, and write Ĝ for
the graph G with v distinguished as a sink. Let d be the degree of v.

Recall that the Tutte polynomial TG(x, y) is defined by

TG(x, y) =
∑

A⊆E

(x − 1)c(A)−c(E)(y − 1)c(A)+|A|−|V |

where c(A) denotes the number of connected components of the spanning subgraph (V, A).

Theorem 7 ([27]). The Tutte polynomial TG(x, y) evaluated at x = 1 is given by

TG(1, y) = yd−m
∑

σ

y|σ|

where the sum is over all recurrent sandpile configurations σ on Ĝ, and |σ| denotes the number of particles in σ.

Differentiating and evaluating at y = 1, we obtain

d

dy
TG(1, y)

∣
∣
∣
∣
y=1

=
∑

σ

(d − m + |σ|). (3)

Referring to the definition of the Tutte polynomial, we see that TG(1, 1) is the number of spanning trees of G, and
that the left side of (3) is the number of spanning unicyclic subgraphs of G. (In evaluating TG at x = y = 1, we
interpret 00 as 1.) The number of recurrent configurations equals the number of spanning trees of G, so the stationary
density ζs may be expressed as

ζs(Ĝ) =
1

nTG(1, 1)

∑

σ

|σ|.

Combining these expressions yields the following:

Corollary 8.

ζs(Ĝ) =
1

n

(

m − d +
u(G)

κ(G)

)

where κ(G) is the number of spanning trees of G, and u(G) is the number of spanning unicyclic subgraphs of G.

Note that m − d is the minimum number of particles in a recurrent configuration, so the ratio u(G)/κ(G) can be
interpreted as the average number of excess particles in a recurrent configuration.

Everything so far applies to general connected graphs G. The following is specific for the complete graph.

Theorem 9 (Wright [28]). The number of spanning unicyclic subgraphs of Kn is

u(Kn) =

(√
π

8
+ o(1)

)

nn− 1

2 .
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Proof of Theorem 6. For K̂n we have

m − d =
n(n − 1)

2
− (n − 1) =

(n − 2)(n − 1)

2
.

From Corollary 8, Theorem 9, and Cayley’s formula κ(Kn) = nn−2, we obtain

ζs(K̂n) =
1

n

(
(n − 2)(n − 1)

2
+

u(Kn)

κ(Kn)

)

=
n

2
+

(√
π

8
+ o(1)

)√
n.

On the other hand, if we let

λ = n − 2
√

n log n

and start with σ(v) ∼Poisson(λ) particles at each vertex v of Kn, then for all v

Pr[σ(v) ≥ n] <
1

n2
.

So

Pr[σ(v) ≥ n for some v] <
1

n
;

in other words, with high probability no topplings occur at all. Thus

Pr
(

Λc(Kn) ≥ n − 2
√

n logn
)

> 1 − 1

n

which completes the proof.

One might guess that the large gap between ζs and ζc is related to the small diameter of K̂n: since the sink is
adjacent to every vertex, its effect is felt with each and every toppling. This intuition is misleading, however, as shown
by the lollipop graph L̂n consisting of Kn connected to a path of length n, with the sink at the far end of the path.
Since Ln has the same number of spanning trees and unicyclic subgraphs as Kn, we have by Corollary 8

ζs(L̂n) =
1

2n







m
︷ ︸︸ ︷

n(n − 1)

2
+ n−1 +

u(Ln)

κ(Ln)







=
n

4
+ O(

√
n).

On the other hand, by first stabilizing the vertices on the path, close to half of which end up in the sink without
reaching the Kn, it is easy to see that with high probability

Λc(Ln) ≥ 2n

3
− O(

√

n log n).

V. SANDPILES ON THE FLOWER GRAPH

An interesting feature of parallel chip-firing is that further phase transitions appear above the threshold density ζc.
On a finite graph G = (V, E), since the time evolution is deterministic, the system will eventually reach a periodic
orbit: for some positive integer m, we have ηt+m = ηt for all sufficiently large t. The activity density, ρa, measures
the proportion of vertices that topple in an average time step:

ρa(λ) = Eλ lim
t→∞

1

t

t−1∑

s=0

1

#V

∑

x∈V

1{ηs(x)≥dx}.
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FIG. 4: The flower graph F20.

The expectation Eλ refers to the initial state η0, which we take to be distributed according to the Poisson product
measure with mean λ. Note that the limit in the definition of ρa can also be expressed as a finite average, due to the
eventual periodicity of the dynamics.

Bagnoli et al. [10] observed that ρa tends to increase with λ in a sequence of flat steps punctuated by sudden jumps.
This “devil’s staircase” phenomenon is so far explained only on the complete graph [20]: The number of flat stairs
increases with n, and in the n → ∞ limit there is a stair at each rational number height ρa = p/q.

On the cycle Zn [29] there are just two jumps: at λ = 1, the activity density jumps from 0 to 1/2, and at λ = 2,
from 1/2 to 1. For the n×n torus, simulations [10] indicate a devil’s staircase, which is still not completely understood
despite much effort [30].

In this section we study the “flower” graph, which was designed with parallel chip-firing in mind: the idea is that
a graph with only short cycles should give rise to short period orbits under the parallel chip-firing dynamics. We
find that there are four activity density jumps (Theorem 13). In addition, we determine the stationary and threshold
densities of the flower graph, and find a second-order phase transition at ζc (Theorem 14).

The flower graph Fn consists of a central site together with n ≥ 1 petals (Figure 4). Each petal consists of two
sites connected by an edge, each connected to the central site by an edge. Thus the central site has degree 2n, and all
other sites have degree 2. The number of sites is 2n + 1. The graph F̂n is the same, except one petal serves as sink.

Recall that we defined the density of a configuration as the total number of particles, divided by the total number
of sites. Since the flower graph is not regular, the central site has a different expected number of particles than the
petal sites.

Proposition 10. For parallel chip-firing on the flower graph Fn, every configuration has eventual period at most 3.

The proof uses the following two lemmas.

Lemma 11 ([31] Lemma 2.5). If the eventual period is not 1, then after some finite time, every site x has height at
most 2dx − 1.

We also use an observation from [10]; it was stated and proved there for Z
2, but the same proof works for general

graphs.

Lemma 12 ([10]). Let two height configurations η and ξ be “mirror images” of each other, that is, η(x) = 2dx−1−ξ(x)
for all x. Then after performing for each a parallel chip-firing time step, the two configurations are again mirror images
of each other.

Proof of Proposition 10. Suppose at time t the model has settled into periodic orbit, and the period is not 1. Then
by Lemma 11, at time t every petal site has height at most 3. Say that a petal is in state ij if it has i particles at
one site and j particles at the other site (we do not distinguish between the states ij and ji). A priori there are ten
possible petal states, listed below, where each one has two possible successor states, depending on whether or not the
central site is stable. If a petal is in state ij, then by S(ij) we denote the state that it is in after one time step in
which the central site does not topple, and likewise by U(ij) after one time step in which the central site topples.
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state S(state) U(state)

00 00 11

01 01 12

02 01 12

03 11 22

11 11 22

12 02 13

13 12 23

22 11 22

23 12 23

33 22 33

From this we see that a petal will be in state 00 only if the central site is always stable, and consequently each site is
always stable, in which case the period is 1. Similarly, petal state 33 only occurs if the central site is unstable each
step, in which case each site must be unstable each step, and the period is again 1. State 03 is not a successor of any
state of these states, so it will not be a periodic petal state either. Thus the set of allowed periodic petal states is
{01, 02, 11, 12, 13, 22, 23}.

If the central site is stable every other time step, then the possible petal states are 12 → 02 → 12, 22 → 11 → 22,
and 13 → 12 → 13, each of which has period 2. Then the period of the entire configuration is 2.

Thus if the period is larger than 2, the central site must be stable for at least two consecutive time steps, or else
unstable for at least two consecutive time steps. We will label a time step S if the central site is stable in that time
step, otherwise we label it U. So, if the period is larger than 2 we will see SS or UU in the time evolution. In the
latter case, we can study the mirror image, which will have the same period, and for which we will see SS.

Eventually the central site must be unstable again, since otherwise the period would be 1. Therefore, we can
examine three time steps labeled SSU. Examining the evolution of the central site together with the petals, we see

S S U

01, 02 01 01 12

12, 23 02 01 12

11, 22 11 11 22

23 12 02 12

Whenever we have SSU, during the second and third time steps each petal contributes at most two particles to the
central site, while the central site topples, so the central site must again be stable. Thus SSUU cannot occur, and we
see SSUS.

There are two cases for what the central site does next. Let us first consider SSUSU.

S S U S U

01, 02 01 01 12 02 12

12, 23 02 01 12 02 12

11, 22 11 11 22 11 22

23 12 02 12 02 12

During the last two time steps, each petal contributes exactly 2 particles to the central site, and the central site
topples once. Thus after two time steps not only the petals, but also the central site is in the same state. Therefore,
the period becomes 2.

Next we consider SSUSS. At this stage each petal is in state 01 or 11, so if there were yet another S, the sandpile
would be periodic with period 1. So we see SSUSSU, and because SSUU is forbidden, we conclude that we see
SSUSSUS.

S S U S S U S

01, 02 01 01 12 02 01 12

12, 23 02 01 12 02 01 12

11, 22 11 11 22 11 11 22

23 12 02 12 02 01 12
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At the time of the third S, each petal is in state 12 or 22. Between the third S and the fifth S, each petal contributes
exactly two particles to the central site and returns to the same state, while the central site topples once. Thus the
configuration is periodic with period 3.

We conclude from the above case analysis that the activity ρa is always one of 0, 1/3, 1/2, 2/3, or 1. Table III
summarizes the behavior of the periodic sandpile states for different values of ρa.

periodic sandpile states

activity ρa 0 1/3 1/2 2/3 1

central site S S S U S U S U U U

p
et

a
ls 01 12 02 01 12 02 23 12 13 ≥ 22

11 22 11 11 22 11 22 11 22

00 13 12

TABLE III: Behavior of the central site and petals as a function of the activity ρa.

The following theorem shows that parallel chip-firing on the flower graph exhibits four distinct phase transitions
where the activity ρa jumps in value: For each α ∈ {0, 1

3 , 1
2 , 2

3 , 1}, there is a nonvanishing interval of initial densities
λ where ρa = α asymptotically almost surely.

Theorem 13. Let ζc be the unique root of 5
3 + 1

3e−3ζ = ζ, and let ζ′c be the unique positive root of 10
3 − 1

3e−3ζ = ζ.
(Numerically, ζc = 1.6688976 . . . and ζ′c = 3.3333182 . . . .) With probability tending to 1 as n → ∞, the activity
density ρa of parallel chip-firing on the flower graph Fn is given by

ρa =







0, if 0 ≤ λ < ζc

1/3, if ζc < λ < 2

1/2, if 2 < λ < 3

2/3, if 3 < λ < ζ′c
1 if ζ′c < λ.

Proof. In a given petal, let X denote the difference modulo 3 of the number of particles on the two sites of the petal.
Observe that X is unaffected by toppling. Let Z denote the number of petals for which X = 0, and R denote the
total number of particles, in a given initial configuration. Using Table III, we can relate Z, R, and the activity ρa.

When ρa = 0, we have less than 2n particles at the central site, at most two particles for the Z petals of type
X = 0, and exactly one particle for the other n − Z petals, so 0 ≤ R < 2n + 2Z + (n − Z) = 3n + Z.

When ρa = 1/3, by considering the U time step, we have R ≥ 2n + 2Z + (n − Z) = 3n + Z. By considering the
preceding S time step, we have R < 2n + 2Z + 2(n − Z) = 4n.

When ρa = 1/2, by considering the U time step, we have R ≥ 4n, and by considering the S time step, we get
R < 2n + 4Z + 4(n − Z) = 6n.

When ρa = 2/3, by considering the second U step, we have R ≥ 2n + 4Z + 4(n − Z) = 6n. By considering the S
time step, we have R < 2n + 4Z + 5(n − Z) = 7n − Z.

When ρa = 1, we have R ≥ 2n + 4Z + 5(n − Z) = 7n − Z.
Since for given n and Z, these intervals on the values of R are disjoint, we see that the converse statements hold as

well: the values of R and Z determine the activity ρa. We summarize these bounds:

ρa =







0 if and only if 0 ≤ R < 3n + Z

1/3 if and only if 3n + Z ≤ R < 4n

1/2 if and only if 4n ≤ R < 6n

2/3 if and only if 6n ≤ R < 7n − Z

1 if and only if 7n− Z ≤ R.

Everything so far holds deterministically; next we use probability to estimate R and Z. By the weak law of large
numbers, R/n → 2λ and Z/n → Pr(X = 0) in probability. Thus, to complete the proof it suffices to show

Pr(X = 0) =
1

3
(1 + 2e−3λ). (4)
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FIG. 5: Density ρ(λ) of the final stable configuration as a function of initial density λ on the flower graph F̂n for large n. A
second-order phase transition occurs at λ = ζc. Beyond this transition, the density of the driven sandpile decreases with λ.
[In [1], the curve in this figure was correctly graphed, but mislabeled as (5 + e−λ)/3.]

We can think of building the initial configuration σλ by starting with the empty configuration and adding particles
in continuous time. Then the value of X for a single petal as particles are added is a continuous time Markov chain
on the state space {0,±1} with transitions 0 → ±1 at rate 2, and ±1 → 0 and ±1 → ±1 each at rate 1. Starting in
state 0, after running this chain for time λ we obtain

[Pr(X = 0), Pr(X 6= 0)] = [1, 0] exp

{

λ

[

−2 2

1 −1

]}

The eigenvalues of the above matrix are 0 and −3, with corresponding left eigenvectors v1 = [1, 2] and v2 = [1,−1].
Since [1, 0] = 1

3v1 + 2
3v2, we obtain (4).

The following theorem describes a phase transition in the driven sandpile dynamics on the flower graph analogous
to Theorem 4 for the bracelet graph. We remark on one interesting difference between the two transitions: for λ > ζc,
the final density ρ(λ) is increasing in λ for the bracelet, and decreasing in λ for the flower graph.

For λ > 0, let σλ be the configuration with Poisson(λ) particles independently on each site of F̂n. Let ηλ = (σλ)◦

be the stabilization of σλ, and let

ρn(λ) =
1

n − 1

n−1∑

x=1

ηλ(x)

be the final density.

Theorem 14. For the flower graph with n petals, in the limit n → ∞ we have

1. The threshold density ζc is the unique positive root of ζ = 5
3 + 1

3e−3ζ .

2. The stationary density ζs is 5/3.

3. ρn(λ) → ρ(λ) in probability, where

ρ(λ) = min

(

λ,
5

3
+

1

3
e−3λ

)

=

{

λ, λ ≤ ζc

5
3 + 1

3e−3λ, λ > ζc.

Proof. Part 1 follows from Theorem 13.
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For Part 2, we use the burning algorithm. In all recurrent configurations on F̂n, the central site has either 2n − 1
or 2n− 2 particles. All other sites have at most one particle, and in each petal (except the sink) there is at least one
particle. For each petal that is not the sink, there are two possible configurations with 1 particle, and one with 2
particles. Each of these occurs with equal probability in the stationary state, so the expected number of particles in the

petals is (n−1)(2
3 ·1+ 1

3 ·2) = 4n
3 +O(1) as n → ∞. Therefore, the total density is ζs = limn→∞

2n+4n/3
2n−1 +o(1) = 5/3.

For part 3, for the driven dissipative sandpile on F̂n, we first stabilize all the petals, then topple the center site if
it is unstable, then stabilize all the petals, and so on. For each toppling of the center site, the sandpile loses O(1)
particles to the sink. If the center topples at least once, then each petal will be in one of the states 11, 01, or 10,
after which the number of particles at the center site is R − n− Z + O(1). Recall from the proof of Theorem 13 that
R/n → 2λ and Z/n → 1

3 (1+2e−3λ) in probability. Thus if λ ≤ ζc, then R−n+1−Z
2n → λ− 2

3 + 1
3e−3λ ≤ 1 in probability,

so the sandpile does not lose a macroscopic amount of sand, and ρn(λ) → λ in probability.
If λ > ζc, then the number of particles that remain after stabilization is 2n + n + Z + O(1). In this case, we have

ρn(λ) = 3n+Z
2n+1 + o(1) → 5

3 + 1
3e−3λ in probability.

VI. SANDPILES ON THE CAYLEY TREE

Dhar and Majumdar [14] studied the abelian sandpile model on the Cayley tree (also called the Bethe lattice) with
branching factor q, which has degree q +1. Implicit in their formulation is that they used wired boundary conditions,
i.e., where all the vertices of the tree at a certain large distance from a central vertex are glued together and become
the sink. (The other common boundary condition is free boundary conditions, where all the vertices at a certain
distance from the central vertex become leaves, and one of them becomes the sink. The issue of boundary conditions
becomes important for trees, because in any finite subgraph, a constant fraction of vertices are on the boundary. This
is in contrast to Z

2, where free and wired boundary conditions lead to the same infinite volume limit. See [32].)
The finite regular wired tree Tq,n is the ball of radius n in the infinite (q + 1)-regular tree, with all leaves collapsed

to a single vertex s. In T̂q,n the vertex s serves as the sink. Maes, Redig and Saada [33] show that the stationary

measure on recurrent sandpiles on T̂q,n has an infinite-volume limit, which is a measure on sandpiles on the infinite
tree. Denoting this measure by Prq, if h denotes the number of particles at a single site far from the boundary, then
we have [14]

Prq[h = i] =
1

(q2 − 1)qq

i∑

m=0

(
q + 1

m

)

(q − 1)q+1−m.

From this formula we see that the stationary density is

ζs = Eq[h] =
q + 1

2
.

For 3-regular, 4-regular, and 5-regular trees, these values are summarized below:

FIG. 6: The Cayley trees (Bethe lattices) of degree d = 3, 4, 5.
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tree
Eq[h]

distribution of height h of sand

q degree Prq [h = 0] Prq[h = 1] Prq[h = 2] Prq[h = 3] Prq[h = 4]

2 3 3/2 1/12 4/12 7/12

3 4 2 2/27 2/9 1/3 10/27

4 5 5/2 81/1280 27/160 153/640 21/80 341/1280

Large-scale simulations on Tq,n are rather impractical because the vast majority of vertices are near the boundary.
Consequently, each simulation run produces only a small amount of usable data from vertices near the center.

To experimentally measure ζc for the Cayley trees, we generated large random regular graphs Gq,n, and used these
as finite approximations of the infinite Cayley tree. We used the following procedure to generate random connected
bipartite multigraphs of degree q+1 on n vertices (n even). Let M0 be the set of edges (i, i+1) for i = 1, 3, 5, . . . , n−1.
Then take the union of M0 with q additional i.i.d. perfect matchings M1, . . . , Mq between odd and even vertices. Each
Mj is chosen uniformly among all odd-even perfect matchings whose union with M0 is an n-cycle.

Most vertices of Gn will not be contained in any cycle smaller than logq n + O(1) (see e.g., [34]), so these graphs
are locally tree-like. For this reason, we believe that as n → ∞ the threshold density Λc(Gn) will be concentrated at
the threshold density of the infinite tree.

Since the choice of multigraph affects the estimate of ζc, we generated a new independent random multigraph for
each trial. The results for random regular graphs of degree 3, 4 and 5 are summarized in Tables IV, V, and VI.
We find that for the 5-regular tree, the threshold density is about 2.511 rather than 2.5, for the 4-regular tree the
threshold density is very close to but decidedly larger than 2, while for the 3-regular tree the threshold density is
extremely close to 1.5, with a discrepancy that we were unable to measure. However, for the 3-regular tree there is a
measurable discrepancy (about 2 × 10−6) in the probability that a site has no particles.

n #samples E[h]
distribution of height h of sand #topplings

Pr[h = 0] Pr[h = 1] Pr[h = 2] ÷n log1/2 n

1048576 2097152 1.5004315 0.0833326 0.332903 0.583764 1.263145

2097152 1048576 1.5003054 0.0833321 0.333031 0.583637 1.258046

4194304 524288 1.5002161 0.0833314 0.333121 0.583548 1.253092

8388608 262144 1.5001528 0.0833311 0.333185 0.583484 1.247642

16777216 131072 1.5001081 0.0833311 0.333230 0.583439 1.242359

33554432 65536 1.5000765 0.0833307 0.333262 0.583407 1.237317

67108864 32768 1.5000540 0.0833307 0.333285 0.583385 1.232398

134217728 16384 1.5000382 0.0833307 0.333300 0.583369 1.227548

268435456 8192 1.5000269 0.0833308 0.333311 0.583358 1.222371

536870912 4096 1.5000191 0.0833308 0.333319 0.583350 1.214431

1073741824 2048 1.5000136 0.0833307 0.333325 0.583344 1.212751

∞ (stationary) 1.5 0.0833333 0.333333 0.583333

TABLE IV: Data for the fixed-energy sandpile on a pseudorandom 3-regular graph on n nodes. Each estimate of E[h] has
standard deviation less than 7 · 10−8, and each estimate of the marginals Pr[h = i] has standard deviation less than 3 · 10−7.
The data for E[h] appears to fit 3/2 + const/

√
n very well, and extrapolating to n → ∞ it appears that E[h] → 1.500000 to six

decimal places. However, apparently Pr[h = 0] → 0.083331 < 1/12.
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n #samples E[h]
distribution of height h of sand #topplings

Pr[h = 0] Pr[h = 1] Pr[h = 2] Pr[h = 3] ÷n log1/2 n

1048576 2097152 2.001109 0.073884 0.221887 0.333466 0.370763 0.623322

2097152 1048576 2.000853 0.073881 0.221978 0.333547 0.370593 0.618848

4194304 524288 2.000688 0.073880 0.222037 0.333599 0.370484 0.620894

8388608 262144 2.000584 0.073878 0.222075 0.333631 0.370416 0.631324

16777216 131072 2.000518 0.073877 0.222100 0.333651 0.370372 0.649328

33554432 65536 2.000477 0.073877 0.222114 0.333664 0.370345 0.670838

67108864 32768 2.000451 0.073877 0.222123 0.333673 0.370328 0.691040

134217728 16384 2.000434 0.073876 0.222130 0.333678 0.370316 0.699706

268435456 8192 2.000424 0.073876 0.222134 0.333681 0.370310 0.695065

536870912 4096 2.000417 0.073876 0.222136 0.333683 0.370305 0.684507

1073741824 2048 2.000413 0.073876 0.222138 0.333684 0.370303 0.673061

∞ (stationary) 2 0.074074 0.222222 0.333333 0.370370

TABLE V: Data for the fixed-energy sandpile on a pseudorandom 4-regular graph on n nodes. Each estimate of E[h] and of
the marginals Pr[h = i] has standard deviation less than 3 · 10−7.

n #samples E[h]
distribution of height h of sand #topplings

Pr[h = 0] Pr[h = 1] Pr[h = 2] Pr[h = 3] Pr[h = 4] ÷n

1048576 1048576 2.512106 0.062271 0.166547 0.237230 0.264711 0.269242 1.666086

2097152 524288 2.511947 0.062269 0.166579 0.237256 0.264727 0.269169 1.666244

4194304 262144 2.511847 0.062268 0.166599 0.237272 0.264737 0.269123 1.666404

8388608 131072 2.511781 0.062267 0.166613 0.237283 0.264743 0.269093 1.666589

16777216 65536 2.511743 0.062267 0.166621 0.237289 0.264748 0.269075 1.667322

33554432 65536 2.511716 0.062267 0.166627 0.237293 0.264750 0.269063 1.668196

67108864 32768 2.511700 0.062267 0.166630 0.237296 0.264752 0.269056 1.669392

134217728 16384 2.511689 0.062267 0.166632 0.237297 0.264755 0.269050 1.671613

268435456 8192 2.511683 0.062266 0.166634 0.237299 0.264753 0.269048 1.675479

536870912 4096 2.511680 0.062267 0.166633 0.237300 0.264755 0.269045 1.677092

1073741824 2048 2.511677 0.062266 0.166634 0.237300 0.264755 0.269044 1.688093

∞ (stationary) 2.5 0.063281 0.168750 0.239063 0.262500 0.266406

TABLE VI: Data for the fixed-energy sandpile on a pseudorandom 5-regular graph on n nodes. Each estimate of E[h] and of
the marginals Pr[h = i] has standard deviation less than 2 · 10−6.
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VII. SANDPILES ON THE LADDER GRAPH

The examples in previous sections suggest that the density conjecture can fail for (at least) two distinct reasons:
local toppling invariants, and boundary effects. A toppling invariant for a graph G is a function f defined on sandpile
configurations on G which is unchanged by performing topplings; that is

f(σ) = f(σ + ∆x)

for any sandpile σ and any column vector ∆x of the Laplacian of G. Examples we have seen are

f(σ) = σ(x) mod 2

where x is any vertex of the bracelet graph Bn; and

f(σ) = σ(x1) − σ(x2) mod 3

where x1, x2 are the two vertices comprising any petal on the flower graph Fn. Both of these toppling invariants are
local in the sense that they depend only on a bounded number of vertices as n → ∞.

The Cayley tree has no local toppling invariants, but the large number of sinks, comparable to the total number
of vertices, produce a large boundary effect. The density conjecture fails even more dramatically on the complete
graph (Theorem 6). One might guess that this is due to the high degree of interconnectedness, which causes boundary
effects from the sink to persist as n → ∞. A good candidate for a graph G satisfying the density conjecture, then,
should have

• no local toppling invariants,

• most vertices far from the sink.

The best candidate graphs G should be essentially one-dimensional, so that the sink is well insulated from the bulk
of the graph, keeping boundary effects to a minimum. Indeed, the only graph known to satisfy the density conjecture
is the infinite path Z.

Járai and Lyons [15] study sandpiles on graphs of the form G × Pn, where G is a finite connected graph and Pn is
the path of length n, with the endpoints serving as sinks. The simplest such graphs that are not paths are obtained
when G = P1 has two vertices and one edge. These graphs are a good candidate for ζc = ζs, for the reasons described
above. Nevertheless, we find that while ζc and ζs are very close, they appear to be different.

First we calculate ζs. Jarai and Lyons [15, section 5] define recurrent configurations as Markov chains on the state
space

X =
{

(3, 3), (3, 2), (2, 3), (3, 1), (1, 3), (3, 2), (2, 3)
}

describing the possible transitions from one rung of the ladder to the next. States (i, j) and (i, j) both represent
rungs whose left vertex has i − 1 particles and whose right vertex has j − 1 particles. The distinction between states
(3, 2) and (3, 2) lies only in which transitions are allowed. The adjacency matrix describing the allowable transitions
is given by

A =















1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0

1 0 0 0 0 0 1















.

FIG. 7: The ladder graph.
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n #samples E[h]
distribution of height h of sand #topplings

Pr[h = 0] Pr[h = 1] Pr[h = 2] ÷n5/2

256 4194304 1.60567 0.07695 0.24043 0.68262 0.094773

512 2097152 1.60693 0.07656 0.23996 0.68349 0.095366

1024 1048576 1.60757 0.07636 0.23970 0.68393 0.095864

2048 524288 1.60788 0.07626 0.23960 0.68414 0.096316

4096 262144 1.60805 0.07621 0.23952 0.68426 0.096545

8192 131072 1.60814 0.07618 0.23950 0.68432 0.096753

16384 65536 1.60816 0.07618 0.23949 0.68434 0.097113

32768 32768 1.60818 0.07617 0.23948 0.68435 0.096944

65536 16384 1.60820 0.07616 0.23948 0.68436 0.097342

131072 8192 1.60820 0.07617 0.23946 0.68437 0.097648

262144 4096 1.60821 0.07615 0.23949 0.68436 0.096158

∞ (stationary) 1.60566 0.07735 0.23964 0.68301

TABLE VII: Data for the fixed-energy sandpile on 2 × n ladder graphs. Each estimate of E[h] and of the marginals Pr[h = i]
has a standard deviation smaller than 10−5. To four decimal places, the threshold density ζc equals 1.6082, which exceeds the
stationary density ζs = 7/4 −

√
3/12 = 1.6057. The total number of topplings appears to scale as n5/2.

Its largest eigenvalue is 2 +
√

3, and the corresponding left and right eigenvectors are

u = (1 +
√

3, 1 +
√

3, 1 +
√

3, 1, 1, 1, 1)

v = (3 +
√

3, 1 +
√

3, 1 +
√

3, 1 +
√

3, 1 +
√

3, 1, 1)T

By the Parry formula [35], the stationary probabilities are given by p(i) = uivi/Z, where Z is a normalizing constant.
So

p(3, 3) = (1 +
√

3)(3 +
√

3)/Z

p(2, 3) = p(3, 2) = (1 +
√

3)2/Z

p(1, 3) = p(3, 1) = (1 +
√

3)/Z

p(2, 3) = p(3, 2) = 1/Z

where

Z = (1 +
√

3)(3 +
√

3) + 2(1 +
√

3)2 + 2(1 +
√

3) + 2.

Thus we find that for the ladder graph in stationarity, the number h of particles at a site satisfies

Pr[h = 0] = − 1
2 +

√
3

3 = 0.0773503 . . .

Pr[h = 1] = 5
4 − 7

√
3

12 = 0.2396370 . . .

Pr[h = 2] = 1
4 +

√
3

4 = 0.6830127 . . .

ζs = E[h] = 7
4 −

√
3

12 = 1.60566243 . . .

In contrast, the threshold density for ladders appears to be about 1.6082. Table VII summarizes simulation data on
finite 2 × n ladders.
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VIII. CONCLUSIONS

We have rigorously demonstrated that Conjecture 3 does not hold for the abelian sandpile model, so that the
conclusions of [6], “FES are shown to exhibit an absorbing state transition with critical properties coinciding with
those of the corresponding sandpile model”, deserve to be re-evaluated.

In some recent papers such as [36], the DMVZ paradigm is explicitly restricted to stochastic models. In other recent
papers [37, 38] it is claimed to apply both to stochastic and deterministic sandpiles, although these papers focus on
stochastic sandpiles, for the reason that deterministic sandpiles are said to belong to a different universality class.
While our results refute the density conjecture for deterministic sandpiles, the validity of the density conjecture for
stochastic sandpiles remains an intriguing open question.

An interesting possibility for further research is to examine initial conditions other than a Poisson(ζ) number
of particles independently at each site. As Grassberger and Manna observed [8], the value of the FES threshold
density depends on the choice of initial condition. One might consider a more general version of FES, namely adding
independent Poisson((ζ − ζ0)) numbers of particles to a “background” configuration τ of density ζ0 already present.
For example, taking τ to be the deterministic configuration on Z

d of 2d − 2 particles everywhere, by [25, Prop 1.4]
we obtain a threshold density of ζc = 2d − 2. Many interesting questions present themselves: for instance, for which
background does ζc take the smallest value, and for which backgrounds do we obtain ζc = ζs? It would also be
interesting to replicate the phase transition for driven sandpiles (see Theorems 4 and 14) for different backgrounds.
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[4] R. Dickman, M. Muñoz, A. Vespignani, and S. Zapperi, Braz. J. Phys. 30, 27 (2000), cond-mat/9910454.
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